ICC21 Program of Author Submitted Papers

(Click paper TITLE to view Abstract)

Submitted paper manuscripts are under Past Proceedings/Cryocoolers 21.


1 Aerospace Applications

1.1 Thermal Design of the Earth Surface Mineral Dust Source Investigation (EMIT)

J.S. Cha, D.L. Johnson, and L.D. Fonseca. Jet Propulsion Laboratory, Pasadena, CA; O. Deng, D.G. Gilmore, The Aerospace Corp., El Segundo, CA

1.2 Enabling Ambitious Space Science Missions Thanks to 10K-20K Cryocooling

S. Carpentier, P.Barbier and J. Butterworth, Air Liquide Adv. Tech., Sassenage, France; S. Martin, I. Charles, J.M. Duval, Univ. Grenoble Alpes, Grenoble, France; F.Fontani, W.Errico, Sitael S.P.A., Pisa , Italy; J. Mullié , G. de Jonge, Thales Cryogenics, Eindhoven, The Netherlands, M. Branco, M. Linder, ESA-ESTEC, Noordwijk, The Netherlands

1.3 Integration of a Tactical Cryocooler for 6U Hyperspectral Thermal Imager

C.S. Kirkconnell, West Coast Solutions; M.A. Nunes, Hawaii Space Flight Laboratory, HA; I. Ruehlich, AIM Infrarot-Module, Germany; H R. Papinsack, American Infrared Solutions; M.V. Zagarola, Creare, Hanover, NH; S.B. Rafol, JPL, Pasadena, CA

1.4 Study for Continuity of Cooling Operation of SPICA Cryogenic System by Adding Refrigerant Circulation System

K. Narasaki, Sumitomo Heavy Industries, Ltd., Niihama, Ehime, Japan

1.5 Lifetime Verification and Applications of the 1K-Class Joule Thomson Cooler for Space Science Missions

K. Shinozaki, JAXA/ISAS; Y. Sato, K.Tanaka and H. Sugita, JAXA/R&D; N.Y. Yamasaki and T. Nakagawa, JAXA/ISAS; K. Mitsuda, NAOJ; S. Tsunematsu, K.Ootsuka, K. Kanao and K.Narasaki, SHI, Japan


2 PT Cooler Development & Testing

2.1 Characterization Testing of Space-Flight Lockheed Martin Micro1-2 Cryocooler for the Mapping Imaging Spectrometer for Europa (MISE)

I.M. McKinley, D.L. Johnson, J.I. Rodriguez, Jet Propulsion Laboratory, Pasadena, CA

2.2 Qualification of Northrop Grumman MiniCoolerPlus Thermal Mechanical Unit for a Space-Flight Mission

L. Amouzegar, M. Petach, and L. Abelson, Northrop Grumman AS, Redondo Beach, CA

2.3 LPT6510 Test Results up to TRL6

E. Jansen, R. Arts, J. Mullié, Thales Cryogenics B.V., The Netherlands; J. Tanchon, T. Trollier, Absolut System SAS, France

2.4 AIM Cryocoolers for Harsh Environments

M. Nussberger, I. Rühlich, M. Mai, C. Rosenhagen, T. Wiedmann and S. Zehner, AIM Infrarot-Module, Germany

2.5 Design of a 600g Micro Pulse Tube Cryocooler

T. Feng, Y. Xun, H. Chen, Q. Tang, M. Liang, J. Liang, Chinese Academy of Science (CAS), Beiging, China

2.6 A Lightweight 7W/80K Pulse Tube Cryocooler

N. Wang, M. Zhao, H. Chen, J. Liang, J. Cai, Q. Zhu, M. Zheng, Tech. Inst. of Physics and Chemistry, CAS, China

2.8 24K Single-Stage Coaxial PulseTube Cryocooler without Double-Inlet Phase Shifter

N. Wang, M. Zhao, H. Chen, L. Wei, J. Liang, J. Cai, Key Lab of Tech. on Space Energy Conv., Tech. Inst. of Physics and Chemistry, CAS, Beijing, China

2.9 Large Pulse Tube Cooler with a Heat Interceptor

M.B.C. Branco, C. Buti, L. Desjonqueres, T. Tirolien, M. Linder, European Space Research & Technology Center, The Netherlands


3 Stirling Cooler Development & Testing

3.2 Cost Effective Split and Integral Linear Stirling-Type Cryocoolers for HOT IR Imaging

A. Veprik, S. Zehctzer, A. Daniels, R. Refaeli and A.Wise, CryoTech Ltd, Israel

3.3 Design and Performance Test of Miniature Linear Stirling Cryocoolers

X. Wang, W. Dai, E. Luo, Key Laboratory of Cryogenics of Chinese Academy of Sciences, China; and L. Yang, Y. Zhang, H. Li, Lihan Cryogenics, China

3.4 High-Availability Stirling Coolers

D. Willems, T. Benschop, R. Arts, B. de Veer, and P. Bollens, Thales Cryogenics BV, Eindhoven, The Netherlands

3.5 The Study on High Efficiency and Low Vibration Flexure Bearing Stirling Cryocooler

C. L. Yin, Y. Gao, H. Yan, F. Wang, Q. Hong, X. H. Fan, Z. Wang, Inst. of Cryogenics and Electronics, Hefei, China

3.6 A kW-class Free-Piston Stirling Cooling Prototype for Ultra-Low Temperature Freezing

K.Q. Luo, Y.L. Sun, Z.J. Jiang, E.C. Luo, J.Y. Hu, L.M. Zhang, Z.H. Wu, Z.L. Jia, Y. Zhou, Chinese Academy of Sciences, Beijing, China


4 Brayton Cooler Development

4.1 Space Exploration Applications for Development of High Capacity Reverse Turbo-Brayton Cycle Cryocoolers

B.T. Nugent, M.C. Guzik, and W.L. Johnson, NASA GRC, Cleveland OH; J.R. Stephens, NASA MSFC, Huntsville, AL

4.2 Efficiency Improvements for Turbo-Brayton Cryocoolers for Space

M.V. Zagarola, K.J. Cragin, R.W. Hill, J.A. McCormick, Creare LLC, Hanover, NH

4.3 High Effectiveness Micro-Tube Recuperators for Low-Capacity Turbo-Brayton Cryocoolers for Space

A.L. Niblick, K.J. Cragin, M.V. Zagarola, Creare LLC, Hanover, NH

4.4 Characterization of Copper Mesh as a Heat Transfer Matrix at Low Temperatures

A. Onufrena, T. Koettig, T. Dorau, M.L. Laguna and J. Bremer, CERN, Geneva, Switzerland; T. Tirolien, ESA, Nordwijk, The Netherlands; and H. J. M. Ter Brake, Univ. of Twente, The Netherlands


5 J-T Cryocooler Development

5.1 A Neon JT Cooler for ARIEL

M. Hills, M. Crook, A. Eagles, G. Gilley, B. Green, S. Kendall, C. Padley, C. Pulker, T. Rawlings, STFC Rutherford Appleton Laboratory, Harwell, Oxford , UK

5.3 Performance Testing of a 2K Joule-Thomson Closed-Cycle Cryocooler

M. Crook, M. Hills, G. Gilley, T. Rawlings, C. Pulker, B. Green, STFC Rutherford Appleton Laboratory, Harwell, UK

5.6 Comparison of Experimental and Modeling Results for Mixture Optimization of a Mixed-Gas Joule-Thomson Cycle

J. Detlor, J. Pfotenhauer, and G. Nellis, Univ. of Wisconsin, Madison, WI

5.7 Experimental Validation of a Numerical Model for Nitrogen-Activated Carbon Sorption Compressor Cells

N. Tzabar, A. Davidesko and A. Hamersztein, Thermal Energy Science & Tech. Laboratory, Ariel Univ., Ariel, Israel

5.8 Development of Thin-Plate Square-Shape Sorption Compressor for 5 K J-T Cooler

J. Bae, D. Kwon, S. Jeong, Korea Adv. Inst. of Science and Tech. (KAIST), Daejeon, Korea

5.13 Heat Transfer Analyses and Experimental Study of a Gas-Gap Heat Switch for a Sorption Cooler

Y.L. Lei, Y.N. Zhao, J. Quan, G.T. Hong, Key Lab of Tech. on Space Energy Conv., CAS, Beijing, China

5.14 Research on Counter-Flow Heat Exchangers of Space 2.5K Hybrid Joule-Thomson Cryocooler

Z.Y. Liu, Y.X. Ma, J. Quan, Y.J. Liu, J. Wang, J.G. Li, J.T. Liang, Key Lab of Space Energy Conv. Tech., Tech. Inst. of Physics and Chemistry, CAS, Beijing, China

5.15 Experimental and Numerical Study of Heat Transfer Characteristics of an Oil-Free Valved Linear Compressor for J-T Throttle Refrigerator

J. Sun, J. Lib, Y. Ma, Z. Huang, Y. Liu and J. Cai, Univ.of CAS, Beijing, China and Key Lab of Tech. on Space Energy Conv., Tech. Inst. of Physics and Chemistry, CAS, Beijing, China

5.16 Study on Piston Offset and Efficiency of Linear Compressor for Large Refrigerating Capacity J-T Throttle Refrigerator

J. Sun, J. Li, Y. Ma, Z. Huang. Y. Liu. J. Cai, Univ. of CAS, Beijing, China and Key Lab. of Tech. on Space Energy Conv., Tech. Inst. of Physics and Chemistry, CAS, Beijing, China


6 Low-Temp Cryocooler Development

6.1 Magnet Hysteresis Loss in Adiabatic Demagnetization Refrigerators

P. Shirron, M. Kimball, R. Ottens, J.Tuttle, and A. Jahromi, NASA/Goddard Space Flight Center, Greenbelt, MD

6.2 Numerical Analysis for a Continuously Operating Adiabatic Demagnetization Refrigerator (ADR) between 4.2 K and 2.0 K

D. Kwon, J. Bae, S. Jeong Cryogenic Engin. Laboratory, Korea Adv. Inst. of Science and Tech., Daejeon, Korea

6.3 The Development of an Active Magnetic Regenerative Refrigerator (AMRR) for sub-Kelvin Cooling of Space Science Instrumentation

C.M. Gunderson, G.F. Nellis, F.K. Miller, Univ. of Wisconsin - Madison, Madison, WI

6.4 Adiabatic Expansion of ³He in Superfluid ⁴He

A.T.A.M. de Waele, Eindhoven Univ. of Tech., Eindhoven, The Netherlands

6.5 Thermodynamic Process and Analysis of Dilution Refrigerator

M. Zheng, J. Liang, P. Lin , L. Wei and M. Zhao , Chinese Acadamy of Science, Beijing, China

6.6 The Latest Developments in Low Cost, Low-Power Cooling to below 1 Kelvin

P. McInnes, L.C. Kenny and S.T. Chase, Chase Research Cryogenics Ltd, Sheffield, UK


7 PT & Stirling Cryocooler Modeling

7.2 Effect of Aftercooler Configuration on the Performance of Pulse Tube Cryocoolers

Y. Yasukawa, Fuji Electric Co., Tokyo, Japan; and Y. Ueda, Tokyo Univ. of Agriculture and Tech., Tokyo, Japan

7.7 Research of a High Capacity Coaxial Pulse Tube Cryocooler Working at 170 K

L.J. Wei, N.L. Wang, M.G. Zhao, J.H. Cai, L.T. Liang, Technical Institute of Physics and Chemistry, CAS, Beijing China

7.9 Lumped Element Thermoacoustics Applied to Pulse Tube Cryocoolers

V. Kotsubo, NIST, Boulder, CO

7.10 Thermal Losses in a Coaxial Pulse Tube Cryocooler

H. Rana, M. A. Abolghasemi, R. Stone, M. Dadd, P. Bailey ,Univ. of Oxford, UK

7.11 Boundary Layer Losses in a Miniaturized Tapered Pulse Tube

A. Ghavami, S.M. Ghiaasiaan, Georgia Tech, Atlanta, GA; C. Kirkconnell, West Coast Solutions, Huntington Beach, CA


8 Phase Shifter and Displacer Research

8.1 External Phase Shifting Tuning Mechanism in a Miniature Pulse Tube Cryocooler Using a Semi-Active Electromagnetic Damping System

Y. Greenberg, G. Grossman, Technion – Israel Inst. of Tech., Israel

8.2 An Exploration about a Micro-Cryocooler with Warm-Displacer Phase Shifter

Z.M. Guo, Tongji Univ., Shanghai, China and Univ.of Wisconsin-Madison, WI, USA; J.M. Pfotenhauer, Univ. of Wisconsin-Madison, WI, USA; S.W. Zhu, Tongji Univ., Shanghai, China

8.3 Detailed Analysis of a Coaxial Stirling Pulse Tube Cryocooler with an Active Displacer

M.A. Abolghasemi, H. Rana, R. Stone, M. Dadd, P. Bailey, Dept. of Engin. Science, Univ, of Oxford, Oxford, UK; K. Liang, Dept. of Engin. and Design, Univ. of Sussex, Brighton, UK

8.4 A Passive Displacer for a Stirling Pulse Tube Cryocooler

H. Rana, M.A. Abolghasemi, R. Stone, M. Dadd, P. Bailey, Dept. of Engin. Science, Univ. of Oxford, UK

8.5 Optimization of Phase Controller for Pulse Tube Cryocooler

D. Abraham and B.T Kuzhiveli, Centre for Adv. Studies in Cryogenics (CASC), Nat'l Inst. of Tech., Calicut, India

8.6 Development of Stirling Cryocooler Model that Includes a Full Simulation of the Appendix Gap

T. Rawlings, M. Crook, M. Hills, STFC Rutherford Appleton Laboratory, Harwell, Oxford , UK

9 GM, PT & Stirling Regenerator Research

9.1 A Temperature Instability in 4 K Cryocooler Regenerators Caused by Real Fluid Properties

R. Snodgrass, V. Kotsubo, J. Ullom, and S. Backhaus, NIST, Boulder, CO

9.2 Leveraging Real Fluid Effects as a Tool for Power Flow Measurements in 4 K Cryocooler Regenerators

R. Snodgrass, V. Kotsubo, J. Ullom, and S. Backhaus, National Institute of Standards and Technology, Boulder, CO

9.3 Theoretical and Experimental Investigations on the HoCu2 and GOS as Regenerative Materials at 4-20K

R. Cao, X. Zhi, C. Huang and L. Qiu, Inst. of Refrig. and Cryogenics, Zhejiang University, Hangzhou, China

9.4 Effects of Structural Asymmetry on Regenerator Temperature Non-Uniformity in a High-Power Stirling-Type Pulse Tube Cryocooler

T. Wei, X. Tao, X. Zhi, X. You, J. Wang, L. Qiu, Inst. of Refrig. and Cryogenics, Zhejiang Univ., Hangzhou, China

9.9 Development of a 2D/3D Computational Fluid Dynamic Code for Analyzing Regenerators

A. Ghavami, S.M. Ghiaasiaan, Georgia Tech, Atlanta, GA; C. Kirkconnell, West Coast Solutions, Huntington Beach, CA


10 PT/Stirling Compressor Development

10.3 High Frequency Steel Flexure Acoustic to Electric Transducer for Cryocoolers

T.W. Steiner, Etalim Inc., Vancouver BC, Canada

10.4 Enhancement of Linear Compressor Power and Performance Improvement of Pulse Tube Refrigerator

B. Kim, J. Bae, S. Jeong, Korea Adv. Inst. of Science and Tech. (KAIST), Daejeon, Korea

10.5 Design of Resonating, Linear Compressors for Five-Stage Cascade System with New Refrigerants

V.A. Santosh, B.T. Kuzhiveli, Centre of Adv. Studies in Cryogenics, Nat'l Inst. of Tech., Calicut, India


11 Commercial and Laboratory Applications

11.1 Configuration of Cryocoolers in Large Electric Power Systems for Superconducting Electrified Transportation Applications for Enhanced Resilience

S. Telikapalli, P. Cheetham, C.H. Kim, S. Pamidi, Florida State Univ., Tallahassee, FL

11.2 Performance Analysis of Pulse Tube/3He Joule-Thomson Cryocooler for Thermometer Calibration

T. Shimazaki, NMIJ, AIST, Tsukuba, Japan

11.3 Cryocooler Technology for Electron Particle Accelerators

G. Lawler, N. Majernik, A. Fukasawa, J. Rosenzweig, UCLA, Los Angeles, CA

11.4 Storage Time and Venting Characteristics for Cryogenic Air Supplies after Turning Off Their Cryocoolers

L. Yan, R. Fernando, D.S. Yantek, J.L. Carr, M.A. Reyes, C.R. DeGennaro, J.A. Yonkey, J.R. Srednicki, CDC/NIOSH, Pittsburgh, PA

12 Cryocooler Integration Technologies

12.2 Space Cryogenic Circulator

D. Frank, J.R. Olson, V. Mistry, E. Roth, A.D. Ruiz, Lockheed Martin Space, ATC, Palo Alto, CA

12.3 Cryocooler with Novel Circulator Providing Broad Area Cooling at 90K for Spaceflight Applications

M. Petach, L. Amouzegar, Northrop Grumman AS, Redondo Beach, CA

12.4 High Performance Thermal Straps for a Full Range of Application Temperatures

M. Ralphs, M. Sinfield, and M. Felt, Space Dynamics Lab, Logan, UT

12.6 Vibration Reduction of Pulse Tube Cryocooler for High Purity Germanium Detector

H.Y. Wei, Y.Q. Xun, C.Z. Shi, L.Y. Wang , J.H. Cai, Key Lab of Space Energy Conv. Tech., Tech. Inst. of Physics and Chemistry, CAS, Beijing, China


13 Cryocooler Drive Electronics

13.1 Specifying Cryocooler Electronics for Space Based Missions

K.D Frohling, Iris Technology, Irvine, CA

13.2 Linear Cryocooler Electronics for Tactical Space Missions

B.R. Pilvelait, C.B. Cameron, R.W. Kaszeta, M.V. Zagarola, Creare LLC, Hanover, NH; and M. Martin, N. Hudson, C. Kirkconnell, West Coast Solutions, Huntington Beach, CA

13.3 Reduced-Size Cryocooler Electronics for Space

K.D Frohling, Iris Technology, Irvine, CA

     

© Copyright 2021 Cryocooler.org

Powered by Wild Apricot Membership Software