
Figure 1. Stirling-Pulse-Tube-Refrigerator with orifice and reservoir.
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ABSTRACT

Three one-dimensional models describing the fluid dynamics and thermodynamics in the tube

section of a pulse-tube refrigerator have been developed: numerical, analytical and harmonic. The

numerical model concerns a finite-difference scheme that is second-order accurate in space and

time. The analytical model is exact and based on the method of characteristics. The harmonic

model is approximate and assumes sinusoidal variations of all variables. Some typical results for a

single-stage Stirling type pulse-tube refrigerator are presented.

INTRODUCTION

Pulse-tube refrigeration is based on a new concept that offers great advantages for further

simplification of cooling technologies. In this paper we propose an accurate numerical model to

simulate a Stirling type single-stage pulse tube refrigerator operating at high frequencies. The

model describes the fluid dynamics and thermodynamics inside the tube.

A typical Stirling type pulse tube refrigerator is shown in Fig. 1. The refrigerator works by

cyclic compression and expansion of gas, usually helium. The pressure oscillations in the system

are generated by a piston. An after-cooler removes the heat of compression. The regenerator, which

is made of a matrix of porous media having large heat capacity and large heat-exchanging surface,

absorbs heat from the gas during compression and it returns heat to the gas during expansion. The

cold heat exchanger is the coldest point of the system. Here the heat is removed from the gas. If

there is a suitable phase relationship between the pressure variation and the oscillating gas flow in

the tube, heat will be transported from the cold end to the warm end. The hot heat exchanger is kept

at ambient temperature. Gas flows through the orifice to the reservoir, which is large compared to

the pulse tube. Physical data for a typical single-inlet pulse tube are given in Table 1.
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Table 1. Physical data for a typical single-inlet pulse tube (values at 300 K).

MATHEMATICAL MODEL

We consider the one-dimensional region  0 < x < L , where L is the length of the pulse tube.

We assume that the fluid is Newtonian, the gas is ideal, and the flow is plug. We denote the density

by ð(x,t), the velocity by u(x,t), the temperature by T(x,t), the pressure by p(x,t), the dynamic vis-

cosity by ì, the specific heat capacity of the gas at constant pressure by c
p 
, the thermal conductivity

of the gas by k
g
 and the specific ideal gas constant by R

m
. The equations for mass, momentum and

energy conservation and the equation of state are:

This system of equations is made non-dimensional and a low Mach-number approximation is

applied yielding a uniform pressure variation in the tube.
1,2,3 

 ¶The thermal conductivity, k
g¶
, is as-

sumed to be constant. The density is eliminated from the above set of equations and a time depen-

dent (harmonic herein) pressure is the driving force of the system. The governing equations for the

velocity and the temperature in terms of three auxiliary functions are

¶
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Table 2. Dimensionless parameters for a typical single-inlet pulse tube.

with A, B ¶and ¶Pe ¶defined in Table 2.  All variables are dimensionless and the pressure p¡ is relative

to an average system pressure. The temperature Equation (6) is a nonlinear convection-diffusion

equation where the variable velocity u(x,t), to be found from Eq. (5), determines the convection,

and where Ü(t) T(x,t) is the variable diffusion coefficient. The coefficient Ü(t) is small as follows

from dimensional analysis.
3
  The temperature equation is then dominantly of a convective nature

and therefore close to hyperbolic.  To complete the system of equations for the tube, we define

boundary and initial conditions.  The boundary condition for Eq. (5) is provided by the velocity at

the hot end through the orifice equation

(10)

Here p
b
(t) is the pressure in the buffer (reservoir) and p¡¶(t)  is the dimensionless pressure

variation in the tube. The coefficients A, C and Ü are defined in Table 2, where p
0
=p

av
. The buffer

pressure is slightly changed (via Ü) to prevent a net mass flow. The boundary conditions for Eq. (6)

are velocity dependent: at the cold end, when the velocity is positive, the gas is coming out of the

cold heat exchanger at constant low temperature, but when the velocity is negative, the gas is

flowing back at the decreasing local temperature inside the tube. The same principle holds for the

hot end. Therefore, we adopt the following boundary conditions for the temperature
3
:

where T 
H
 and T 

C 
are the temperatures of the hot and cold heat exchangers, respectively. The hot

end is usually at an ambient temperature around 300 K, and the cold end reaches temperatures in

the range 30 K – 70 K. The initial condition for the temperature is taken linear according to

(13)

The linear initial condition for the velocity follows from the Eqs. (5) and (13).

NUMERICAL METHOD

To solve the problem numerically, the governing partial differential Equations (5)-(6) are dis-

cretized in space and time. We introduce computational grids corresponding to
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The velocity and temperature at the grid point (x
j¶
,t¶

n
) are denoted by u

j

n

  
and T

j

n

.  The adaptive

time step ô
n

 
changes with u

j

n

 
¶such that the CFL stability condition is always satisfied. We apply a

second-order accurate scheme for the spatial discretization of the velocity Equation (5). For the

temperature Equation (6) we apply a second-order scheme in space with central differences for the

diffusion part and flux limiters for the convection part.
4 

  Moreover, a second-order time integra-

tion is used with the ï-method by taking ï = 0.5+¶ô
n
.  The parameter values for the single-inlet

pulse tube used in our simulations are given in Table 1.  In our numerical experiments, we consider

sinusoidal pressure variations of the form

(14)

Thus, the driving pressure starts with expansion, before compression in the second half of

each cycle.

ANALYTICAL SOLUTION

The governing Equations (1)-(4) are simplified by neglecting viscosity (ì=0), conductivity

(k
g
=¶0), and inertia (the left side of Eq. (2)).  The given absolute pressure is uniform (independent

of x) and driving the system.  An analytical solution can then be derived. The velocity is linear in x,

(15)

where ¶u(x=0,¶t)¶ is defined by the boundary condition in Eq. (10), and the last term expresses gas

compressibility.  The gas displaces along characteristic paths in the distance-time plane for which

u=dx/dt.  Integration of Eq. (15) gives

(16)

where  (x
0
,t

0
) is the characteristic path’s start position at a boundary (at t = 0, x = 0, or x = L).

The temperature satisfies Poisson’s law along a characteristic path,

(17)

with corresponding mass density

(18)

RESULTS AND DISCUSSION

In Fig. 2 numerically calculated temperature profiles are shown at dimensionless times õt=4î,

4.5î, 5î, and 5.5î, which correspond to different phases of the pressure cycle: 4î - start of expan-

sion, 4.5î - minimum pressure (expansion), 5î - start of compression, and 5.5î - maximum pres-

sure (compression). There is a very steep gradient in the temperature profile near the cold end of

the tube, because the process started with an expansion. This gradient does not reach the (cold)

boundary, and will therefore finally disappear due to thermal conduction. As can be seen from

Fig. 3, there are no overshoots at the hot and cold ends as reported previously,
2,3

 and these tempera-

ture plots fully agree with the harmonic approach of De Waele, et al.
5,6

  In our numerical investiga-

tions, we try to demonstrate the beneficial effects of refining grids and using flux limiters, in par-

ticular with respect to maintaining the steep gradients in the temperature profile.  Figure 4(a) shows

that the finer the gird, the more accurate the results, as expected.  Figure 4(b) shows how flux

limiters, in this case Van Leer, improve the numerical results. Figure 5 shows the temperature

history at the midpoint of the tube, calculated numerically and analytically. The small differences

are probably due to slightly different buffer pressures used in the simulations.
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Figure 3. Temperature at the cold and hot ends for three cycles.

CONCLUSION

A one-dimensional numerical model has been developed for simulating oscillating gas flow in

the tube section of a pulse-tube refrigerator. The model is second-order accurate in both space and

time. The conservation laws and the ideal gas law have been transformed into two equations gov-

erning velocity and temperature. The behavior of temperature and velocity in the pulse tube, espe-

cially near the cold and hot ends, has been numerically investigated. DC flow is avoided by a buffer

pressure slightly higher than the average pressure in the pulse tube. Undesired temperature over-

shoots are avoided by starting the process with an expansion. The efficiency of flux limiters has

been demonstrated. An analytical solution has been used to successfully verify the numerical results.

Figure 2. Temperature profiles at four phases of one pressure cycle.

305ONE-DIMENSIONAL MODELS OF A PULSE-TUBE COOLER 



Figure 4. Temperature profiles for different grid sizes and different numerical methods.

Figure 5. Temperature for four cycles in the middle of the tube.
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