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ABSTRACT

The Fuji Electric group has developed crucial technologies with high reliability for Stirling

cryocoolers targeted for space missions. For commercial applications, a miniature pulse tube cryo-

cooler with a heat lift of 2 W to 3 W at 70 K using 100 W electric power input has developed and is

being marketed.

A moving magnet motor has been introduced to the driving system in order to achieve better

compactness and higher efficiency in place of the moving coil in a conventional system that had

about 65% efficiency. The compressor performs a total compression work of 75 W with 90% effi-

ciency and has a life longer than 50,000 hours. One intended application is the cooling of a high

temperature superconductive (HTS) device for a wireless telecommunication system.

We began by designing a motor structure and running experiments on basic elements because

a moving magnet system is a new technology to Fuji. At first the magnetic circuit for element tests

was evaluated by a basic equation and computed by general-purpose FEM software. The results

from the element tests and calculated data were used for the next design. For bearing support mag-

nets, we considered various approaches. This paper describes the development status of the com-

pressor, including the motor design and the primary test results.

INTRODUCTION

Recently, wireless communication has rapidly become widespread. This has brought about a

shortage in the regions of electromagnetic wave frequency and caused a need to find measures to meet

the situation. It is well known that one of these measures is the application of a superconducting

filtering system. The system for a receiver is already in practical use, but one for a transmitter remains

unexploited. Therefore, a project to develop a superconducting filtering system for a transmitter was

begun in December 2005 and is scheduled to be completed in March 2008. It is funded by a Japanese

government institution, the Ministry of Public Management, Home Affairs, Posts and Telecommuni-

cations. A cryocooler for that system requires compactness, high frequency and a long lifetime. The

requirements are better performance than that provided by any previously developed cryocooler.
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MOTOR DESIGN

Design Concept

The target specifications for the compressor being developed are shown in Table 1. This target

was too high for a conventional moving coil motor to achieve, especially at an efficiency of 90%.

We started by developing a moving magnet linear motor which was more compact and had the

potential for higher efficiency. To create higher performance motor and be able to increase the

generative force, a moving part needs to combine a permanent magnet and two side magnets, as

shown in Figure 1. The moving part becomes stable at the center of each leg of an outer yoke in this

magnetic configuration because each magnetic circuit between a main magnet and one side magnet

makes a loop through each leg of the outer yoke. If the moving part becomes displaced from a stable

state to the left or right side, magnetic potential energy is stored. In other words, a force is caused in

the opposite direction than that generated by the exciting current.

Our company had very little knowledge and skill with a moving magnet linear motor. In the

first phase, we manufactured an element test model and developed experimental data for the pur-

pose of verifying a basic principle and to understand the effects of the side magnet configuration.

Basic Equation

Fleming’s left-hand rule consists of defining an equivalent current for a generative force. Us-

ing an equivalent current of a permanent magnet, generative force is described as following.

(1)

where, B
g
 is the magnetic flux density of the air gap between an outer yoke and an inner yoke, and

L is the average peripheral length of a permanent magnet. This equation differs from a general BIL

equation in that an equivalent current is twice what it would indicate. This is because the equivalent

current exists on two sides of a magnet. The equivalent current I
M

 is defined in the following equa-

tion:

(2)

where H
CB

 is the magnetic coercive force, L
M

 is the magnetization direction thickness, B
r
 is the

remanent magnetic flux density, 
r
 is the recoil relative permeability of a permanent magnet, and 

0

is the permeability of the vacuum.

By the way, all that is required is that B
g
 or I

M
 is increased to bring about an increase in F

without increasing the size of the motor, as is clear from Eq. (1). If you want to increase B
g
, you

have to supply more current, but that leads to a decreased efficiency in the motor. There are two

methods to increase I
M

. One is to use a stronger magnet, and the other is to add two side magnets to

a main magnet, which means that the number of hypothetical coils is increased. This method shows

that an equivalent current is twice as great, as is shown below:

(3)

Table 1. Target Specifications.
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PRIMARY SIMULATION RESULT

In this section, we show only the behavior of a magnetic flux at a neutral position as the

primary results.  The other results are described in the following sections. A magnetic flux density

and a line of flux without current are shown in Figure 2 and Figure 3, and then with an applied

current of 1.6 A in Figure 4 and Figure 5. This simulation used the general purpose analysis soft-

ware, ANSYS 9.0, and a 2-D axisymmetric electromagnetic field analysis.

Without supplying current to an exciting coil, the magnetic flux is looped between a magnet

and the leg of an outer yoke. These loops of the flux create an axially stable state. Namely, the

center position of the moving part is automatically determined when there are side magnets. This

provides a great advantage compared with a single magnet configuration.

With an appled current of 1.6 A, the magnetic flux flows through a whole outer yoke and

causes a concentration of the flux at the bottom side of each leg of the outer yoke. The force is

generated in the direction which is relaxed by an imbalance of the energy, that is, the upper side.

ELEMENT EXPERIMENT

Experimental Setup

A cross section of the experimental element model is shown in Figure 6. And an outline of the

experimental setup to measure generated force is shown in Figure 7.

To examine the effectiveness of the side magnets, the moving part is prepared in four distinct

configurations, which are different according to the lengths of the side magnets. An outer yoke

Figure 1.  Pattern Diagrams of a Moving Magnet.

Figure 2.  Magnetic Flux Density without Current

in a Neutral Position.

Figure 3. Lines of Magnetic Flux without

Current in a Neutral Position.
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consists of eight segmented steel blocks, which are arranged in a radial pattern.

The inner yoke and the outer yoke are fixed on a supporting flange that is made of stainless

steel. A main magnet as a moving part is a ring geometric neodymium magnet, and two side mag-

nets have reverse poles relative to the main magnet. A magnet holder containing a set of magnets is

connected to a mock piston which rolls on a slider. Because this element model shows the measure-

ments in a static manner, the moving part has no supporting structures, for example, flexure bear-

ings.

The generated force is estimated by a force gauge attached to the head of a mock piston. The

piston displacement from a neutral position is determined by a laser displacement meter.

Result and Discussion

In this test, we measured the restoring force by magnets without current and a net thrust with

three current conditions.

First, the restoring force, which represents different side magnet lengths, is shown in Figure 8.

When a moving part has no side magnet, the restoring force in an experiment as well as in a simu-

lation is about 0 N. With side magnets, the restoring force shows increases monotonically as the

displacement increases. But this does not mean that the longest side magnet has the strongest restor-

ing force, in fact, the side magnet length of 8.5 mm has the strongest restoring force under a 3.7 mm

displacement. In this case, the value of the simulation is a little larger than the experimental one, but

both values show an approximately equal trend. The difference between the experiment and the

simulation is about 10 % under a 2 mm displacement, and 15 % or so at a 4 mm displacement.

Second, the relation of generated force to supplied current in the neutral position is shown in

Figure 9. We can see the true increased effect of side magnets without a restoring force. The greater

the length of the side magnets, the greater is the generative force. The generative force of the side

magnet at a length of 10 mm is 1.6 times greater than at a length of 0 mm. The computational value

is also equal to the experimental value.

Figure 5. Lines of Magnetic Flux with

Current of 1.6A in a Neutral Position.

Figure 4.  Magnetic Flux Density with Current

of 1.6A in a Neutral Position.

Figure 6.  Cross Section of the Element Experimental Model.
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Figure 7.  The Experimental Setup to Measure Generative Force.

Figure 8.  Restoring Force without Current.

Finally, the generative forces of the side magnet at lengths of 0 mm and 10 mm are each shown

in Figure 10 and Figure 11. Without side magnets, the generative force decreases as the displace-

ment increases. The experimental and simulated curves decrease in the same way, but the difference

gets larger with an increasing displacement, up to 10 %.

When there are side magnets, the generative force obviously decreases steeply in comparison

with no side magnets. This means that the restoring force cancels the net generative force. With an

input of 1.6A, this motor is able to displace only 3 mm even with no load.

From these results, we found that a total design which includes a gas spring, a mechanical

spring and a magnetic spring (for restoring force) is important when using side magnets.

CONCLUSION

The results of measuring the restoring force and the generative force are as follows:

• The increased effect of the generative force when there are side magnets of 10 mm is 1.6 times

greater than without magnets.

• The restoring force with side magnets differs according to their length, with a length of

8.5 mm creating the greatest force. The results of both the experiment and the simulation are

in good agreement.
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Figure 9.  Generative Force at Neutral Position

Figure 10.  Generative Force without Side Magnet

Figure 11.  Generative Force with Side Magnet Length of 10mm.
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• The generative force decreases slowly without side magnets, but the generative force with

side magnets decreases steeply until it is cancelled by the restoring force. There is a limit to

the piston stroke.
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