
On the Differential and Integral Inversion

States of the Joule-Thomson Effect and

their Interrelation

B-Z. Maytal

Rafael, Ltd.

Haifa 31021, Israel

ABSTRACT

The differential inversion curve is the loci of thermodynamic states of the vanishing Joule-

Thomson coefficient. The integral inversion curve is the loci of states of vanishing integral  isother-

mal Joule-Thomson effect. The present study examines the behavior of some thermodynamic func-

tions along both inversion curves and explores the interrelation between the two curves. Closed

form expressions are derived through the van der Waals equation of state and these are confronted

with the real gas data.

NOMENCLATURE

c
P

Isobaric specific heat capacity, J · mol
-1

· K
-1

c
V

Isochoric specific heat capacity, J · mol
-1

· K
-1

h Enthalpy, J/mol

R

h
Residual enthalpy at common pressure and temperature, J/mol

h
T

The integral isothermal Joule-Thomson effect, J/mol

P Inversion pressure, Pa

R Universal constant of gases, 8.314 J · mol
-1

· K
-1

T Inversion temperature, K

T
MAX

Maximum inversion temperature, K

s Entropy, J · mol
-1

· K
-

s
r

Residual entropy at common density and temperature, J · mol
-1

· K
-1

v Specific volume, m
3
/mol

Z Compressibility, P/(R·T·

Greek notation

Density of an inversion state, mol/m
3

Reduced temperature,T/T
C

 , K

¯ Normalized inversion temperature, T/T
MAX

, K

Reduced inversion pressure, P/P
C

Reduced density of an inversion state, P/P
C

Adiabatic Joule-Thomson coefficient, K/Pa
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Isothermal Joule-Thomson coefficient, J/Pa

Subscripts/Superscript

C Critical state

DIC Differential inversion curve

IIC Integral inversion curve

INTRODUCTION

The inversion of the Joule-Thomson (J-T) effect was studied at the very early stage (1898)

through the van der Waals equation of state

(1)

by Witkowski
1
, Berthelot

2
, Olszewski

2
, and van der Waals himself.

4
 The molecular attractive and

repulsion coefficients, a and b, characterize each particular gas. The locus of the differential inver-

sion states is defined by the vanishing of the Joule-Thomson coefficient

(2)

The states of vanishing integral isothermal J-T effect are the integral inversion state

(3)

Figure 1 displays for nitrogen the differential inversion curve (DIC) and the integral inversion

curve (IIC), both sharing the same maximum inversion temperature, T
MAX

. Under an isenthalpic

expansion, inside the DIC (the bounded zone marked by A, in Figure 1) temperature decreases

whether the pressure drop is differential or integral (down to zero pressure). At the unbounded zone

marked by C temperature increases under both, a differential and an integral pressure drop. In

region B, temperature decreases as a result of an integral pressure drop but decreases when it is

differential.

The associated reduced value,
MAX

 = T
MAX/

T
C 

, of a van der Waals gas is 27/4 while for most

real gases (except the quantum gases) range from 4.5 to 5.2. In order to avoid this mismatch, the

inversion temperatures are normalized by the particular 
MAX

 (or T
MAX

) of each gas

(4)

For the purpose of this study, it replaces the traditional reduced temperature, . The van der

Waals predictions are expressed in such a normalized form and compared to real gas data. On a

similar ground tried Hendricks et al.
5
 to verify the van der Waals prediction that the maximum

inversion temperature is twice the Boyle temperature defined by

(5)

As well, Holleran
6
 examined the van der Waals prediction that the compressibility along the DIC

gets the unity value at a temperature which is half of the Boyle temperature.

While the DIC was intensively explored since the discovery of this effect, the IIC was studied

less significantly.
7,8

 Furthermore, the interrelation between the two inversion curves was not studied

at all. The inversion curves of the quantum gases deserve a special attention and were discussed

elsewhere.
8,9

THE DENSITY

Along the DIC of the van der Waals gas,

(6)
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and along the IIC

(7)

This linear prediction of density dependence on temperature is confronted in Figure 2 with real

gas data. As one may observe, the relation is linear indeed although the slope is somewhat smaller

than of the van der Waals gas. At ¯ the slope of the DIC is larger than of the IIC (see Figure 1)

when expressed in the coordinates of (¯ ) or (¯ )

(8)

(9)

However, in the plane of ( , ) they share the same slope

(10)

The relation between the normalized differential and integral inversion temperatures at the same

reduced density is

(11)

As displayed in Figure 3, this prediction holds quite nice for real gases. The densities along the

DIC and the IIC at the same normalized temperature are interrelated through

(12)

The reduced density, , along the DIC increases from 0 to 2 as the temperatures becomes lower.

It passes through the value of 1 at the state of peaking inversion pressure. Along the IIC, the reduced

Figure 1. The differential (DIC) and integral (IIC) inversion curves of nitrogen divide the thermodynamic

plane into  the three regions: A (  > 0, h
T

 > 0),   B (  < 0, h
T

 > 0 ),   and C (  < 0, h
T

 < 0).
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density changes from 0 to 3.

THE COMPRESSIBILITY

Along the DIC of the the van der Waals gas

(13)

Z is continuous function along the DIC and peaks at the inversion state of highest differential

inversion pressure ( = 3 or ¯ = 4/9). The highest Z value along the DIC is 9/8. The Z dependence

on pressure, , is formulated by the double expression, one for each wing

(14)

Figure 2. The relation between the normalized inversion temperature and the reduced density along

the integral inversion curve versus van der Waals’ prediction.

Figure 3. The interrelation of the differential and integral inversion temperatures sharing the same

density.
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It is discontinuous at the same state of highest Z where the two wings match.

Along the IIC of a van der Waals gas can be defined as

 (15)

In this case Z > 1, continuous and monotonically increasing as the temperature decreases.

Figure 4 displays the van der Waals prediction versus nitrogen and argon real gas data.

THE  ENTROPY

The residual entropy while referred to the ideal gas (IG) at the same density and temperature

(16)

For the van der Waals gas

(17)

Along the DIC and the IIC

(18)

(19)

The predictive power of each of these expressions alone is limited. However, the interrelation of s
r

along the two inversion curves at the same normalized temperature, namely,

(20)

accurately predicts the real behavior of gases accurately as one may observe in Figure 5. At the

same temperature, the residual entropy of the IIC is twice that of the DIC.

THE JOULE-THOMSON EFFECT

The integral isothermal J-T effect is actually the residual enthalpy, h
R
, while referred to the

Figure 4. The van der Waals prediction of compressibility along the differential (DIC) and integral

(IIC) inversion curves versus nitrogen and argon real gas data.
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ideal gas (IG) at the same pressure and temperature.

(21)

That is because h(T,P = 0) may be replaced by h
IG

(T,P). Through the van der Waals equation of

state, it is

(22)

and along the DIC

(23)

Figure 6 displays a reasonable match with real data of nitrogen and argon. One should pay

attention to the simplicity and accuracy of this expression, gained by the employment of T
MAX

. The

h
T 

 may be interpreted as the specific cooling capacity of a Joule-Thomson cryocooler. It is a

simple and accurate (normalized) temperature dependence of h
T

.

Figure 5. Interrelation of residual entropy along the differential and integral inversion curves.

Figure 6. The integral isothermal Joule-Thomson effect along the differential inversion curve as

function of the normalized temperature.
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Along the IIC by the van der Waals equation of state, the differential isothermal J-T effect is

(24)

It is negative and monotonically decreasing to its lowest value, which is -1/3.

THE C
P

 - C
V

In general, by Maxwell relations

(25)

Along the DIC through the van der Waals equation of state

(26)

and along the IIC of a van der Waals gas

(27)

For an ideal gas, its value is unity. Along both inversion curves it is larger than 1. Along the IIC,

it increases monotonically as the temperature decreases.  However, along the DIC, it has a peaking

behavior. The highest value for a van der Waals gas is 4/3 reached at ¯ = 1/2 which is the Boyle

temperature.  Figure 7 displays this prediction versus the real gas behavior.

SUMMARY

The van der Waals equation of state, combined with the temperature scaling by the maximum

inversion temperature of each gas, exhibit a qualitative and a reasonable quantitative predictive

power when applied to the study of the Joule-Thomson inversion states. At the same density, the

normalized temperature of the DIC is the square of the normalized temperature of the IIC. The

residual entropy by density and temperature of the IIC is twice than of the DIC, both at the same

normalized temperatures.

Figure 7. The c
P

 - c

V

 along the differential (DIC) and integral (IIC) inversion curves versus nitrogen

and argon real gas data.
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