NOTE: Page numbers used in this Index refer to the FIRST PAGE of the referenced article published in the proceedings. To view the referenced article, go to the Table of Contents and click on the article with the referenced page number located to the left of the paper title.

Cryocoolers 14 Subject Index

ACTDP cryocooler development:
Ball Aerospace hybrid Stirling/J-T cooler, 41
Lockheed Martin 4-stage PT w/flow loop, 33
NGST hybrid PT/J-T cooler, 21
As part of NASA programs overview, 7
ADR (see Magnetic refrigerators)
Adv. Mechanical Tech., Inc., 477
Air Force Research Lab (AFRL):
AFR cryogenic research initiatives, 11
analysis of pulse tube losses, 293
Ball SB235 2-stage 35K Stirling perf., 57
DoD space sensor mission trade-offs, 595
flow loop for remote cryogenic loads, 573
multiplate recup. HX for hybrid cooler, 515
thermo optimization criteria for PT, 285
Air Liquide DTA (France):
40-80K high-heat-lift space PT cooler, 75
65K-280W high-freq PT cooler, 133
dilution frig for Planck-HFI, 535
third-stage cooling from 2-stage 4K PT, 157
AIRS cryocoolers in-space performance, 4, 618
Applications of cryocoolers (see Integration with cryocoolers)
Astrium cryocoolers (formerly BAe and MMS), 3
Atlas Scientific:
flow loop for remote cryogenic loads, 573
miniature CVD-based Stirling cooler, 95
multiplate recup. HX for hybrid cooler, 515
Ball Aerospace coolers:
4-6K ACTDP hybrid Stirling/J-T cooler, 7, 8, 41
HIRLDS cooler on-orbit performance, 5, 615
optical refrigerator performance, 539
SB160 performance comparison, 605
SB235 2-stage 35K Stirling perf. mapping, 57
SB235E 2-stage 35K Stirling development, 49
Bearings, flexure springs for linear motors, 335
Brayton cryocoolers (see Reverse-Brayton coolers)
British Aerospace (BAe) cryocoolers (see Astrium)
Buchwald Consulting, optical cooler summary, 539
Canadian Space Agency, PT modeling tool, 307
CEA/SBT (France):
40-80K high-heat-lift space PT cooler, 75
65K-280W high-freq PT cooler, 133
CFIC-Qdrive:
effect of long compressor-PT transfer line, 225
Chesapeake Cryogenics:
ribbon regen perf. in 1-stage GM, 373
photoetched regenerator for high freq PT, 389
Chiba University (Japan):
hydrogen liquefaction w/DGAG-based ADR, 637
Gd-Y alloys for use in ADRs, 549
 optimum pressure ratio of GM cryocooler, 187
Chinese Academy of Sciences, Cryogenics Lab:
0.5W/40K PT cooler for IR detector, 83
6nm diameter coaxial PT development, 117
comparison of two types of Stirling cycles, 249
composition shift of mixed gases in J-T, 453, 459
CTE-based cryogenic thermal switch, 589
Gedeon DC flow loss analysis, 205
gavity effects on high-freq PT perf., 241
numerical sym. of regenerator in 2-stg PT, 405
oil-lub compressor with elastic membrane, 361
phase shift measurement in PT regenerators, 411
thermoacoustic time-averaged effects, 195
thermoacoustic-driven pulse tube cooler, 211, 219
two-stage high-freq PT cryocooler, 177
Claude refrigeration cycle:
for re-liquefaction of LNG boil-off, 629
Clearance seals (see Compressors)
Cleveland State Univ., etched foil regen matrl, 381
Clever Fellows Innov. Consortium (see CFIC-Qdrive)
CNRS, Grenoble, France:
dilution frig for Planck-HFI, 535
third-stage cooling from 2-stage 4K PT, 157
Collins-type 10K cryocooler, 477
Compressors:
flexure springs in linear motors, 335
Fuji 100W moving-magnet comp. for PT, 327
gas spring losses thru clearance seals, 345
oil-lub compressor with elastic membrane, 361
Contamination effect on cryo load in space, 615
Convection, gravity effects on PT perf., 241
Creare rev-Brayton coolers:
circulator for remote cooling, 16
comparison with PT and Stirling coolers, 605
NICMOS cooler in-space performance, 4
recuperative HX for space turbo-Brayton, 525
Cryomech 4K pulse tube cryocoolers:
PT3S403 3-stage 4K PT, 163
helium liquefaction using PT415 cooler, 655
Cryo Wave Adv. Tech, thermoacoustic expander, 429
CTE-based cryogenic thermal switch, 589
Darwin mission 4.5K-5mW sorption cooler, 487
Dilution refrigerator for Planck-HFI, 535
Drexel Univ., PT development, 149
Dutch Space, Darwin sorption cooler, 487
Dysprosium gadolinium alum. garnet (DGAG), 637

Eindhoven Univ. of Technology:
1-D models of pulse tube cooler, 301
hybrid counterflow PT refrigerator, 257
new type of PT streaming, 271

Erbium regenerator materials (see Regenerators)
Estimator for cryocooler performance, 563
Etched foil regenerator mat’l (see Regenerators)
European Space (ESA/ESTEC) activities:
40-80K high-heat-lift space PT cooler, 75
Darwin 4.5K 5mW sorption cooler, 487
European Office of Aerospace R&D, 285
Exergy flows (see Pulse tube theory and invest.)

Flexure bearing springs, 335
Flow loops (see Remote cryogenic loads, cooling of)
Focal plane sensor arrays, overview of, 11, 595
Friedrich-Schiller-Universität, Jena:
9.5K 2W 2-stage coaxial PT devel., 171
Fuji Electric Systems Co. PT compressor, 327

Gas-gap heat switches (see Heat switches)
Gas spring losses in linear compressors, 345
Gedeon Associates:
etched foil regenerator mat’l, tests of, 381
miniature CVD-based Stirling cooler, 95
Sunpower CPT60 60K-2W PT cooler, 123
Gedeon DC flow loss, 205
Georgia Institute of Tech.:
hydrodynam. parameters of regenerators, 397
Gifford-McMahon Cryocoolers:
ribbon regenerator perf. in 1-stage GM, 373
optimization of pressure ratio for, 187
GIFTS 2-stage PT cryocooler, 7, 65
Goddard Space Flight Center (NASA):
NASA cryocooler program overview, 1
GOS regenerator material (see Regenerators)
Gravity effects on high-freq PT perf., 241

Heat exchangers:
micromachined HX for cryosurgical probe, 505
multiple recup. HX for hybrid cooler, 515
recuperative HX for space turbo-Brayton, 525
Heat switches, 589
High temperature superconductor applications (see Integration of cryocoolers with)
Hong Ik University, 629
HTS applications (see Integ. of cryocoolers with)
Honeywell Hymatic, flexure bearing springs, 335
Hybrid multistage coolers:
Ball 4-6K ACTDP J-T/Stirling, 41
Lockheed 6K ACTDP PT w/ flow loop, 33
NGST 6K ACTDP J-T/PT, 21
PT/rev Brayton for 10K, 515
Hydrides (see Sorption cryocoolers)

IAS (France), dilution refrig for Planck, 535
Ice cream production via flash freezing, 621
INAF/ISAF (Italy), 497
Inertance tubes (see Pulse tube theory and invest.)
Infrared detectors, summary of, 11
Integration of cryocoolers with:
cryosurgical probes, 505
CTE-based cryogenic thermal switch, 589
electric current leads, 443
flow loops (see Remote cryogenic loads)
ic cream production, 621
infrared focal planes, 11, 595, 605
liquefaction of gases (see Liquefaction of gases)
remote loads (see Remote cryogenic loads)
space instruments (see Space instruments)
spacecraft payloads in general, 595, 605
Israel Inst. of Tech., CFD model of recip. flow, 317

J-T cryocoolers:
Ball ACTDP 6K cooler development, 7, 8, 41
composition shift of mixed gases in, 453, 459
inversion states of J-T effect, 469
micromachined HX for cryosurgical probe, 505
micromachined J-T cold stage, 437
mixed-gas J-T cooler for elect. current leads, 443
NGST ACTDP 6K cooler de vel., 7, 8, 21
thermoacoustic expansion valve for, 429
Jet Propulsion Laboratory (NASA):
ACTDP 6K cooler contracts, 21, 33, 41
NASA cryocooler program overview, 1
Planck sorption cooler FA testing, 497
Joule-Thomson Cryocoolers (see J-T cryocoolers)

Kapitza cycle for liquefaction of LNG boil-off, 629
KBSI-NHMFL Collaboration Center (Florida):
helium liquefaction using PT cooler, 635
Konoshima Chemical Co.:
dysprosium gadolinium aluminium garnet (DGAG), 637
multilayer ceramic regenerator mat’ls, 367
Korea Basic Science Inst., He liquefaction, 655
Korea Inst. of Science and Tech.:
cycles for re-liquefaction of LNG boil-off, 629
Korea Univ. of Tech. and Education, 629

Liquefaction of gases:
cycles for use with LNG boil-off, 629
helium liquefaction using PT cooler, 635
hydrogen liquefaction using ADR, 637, 645
zero boil-off in propellant tanks, 563, 583
Lockheed Martin Space Systems (Denver):
cooler to provide zero-boil-off propellant, 583
Lockheed Martin ATC (Palo Alto):
6K-18K ACTDP PT with flow loop, 33
10 K PT cooler in DoD space application, 602
55K/140K GIFTS 2-stage PT cooler, 7, 65
110K PT cryocooler w/ flow loop, 583
Magnetic refrigerators:
dysprosium gadolinium aluminium garnet, 637
for hydrogen liquefaction, 637, 645
SUBJECT INDEX

Gd-Y alloys for use in ADRs, 549
La(Fe, Si)\textsubscript{13}, magnetic refrigerant study, 555
regenerator materials for (see Regenerators)
refrigerant materials for (see Refrigerants)
Massachusetts Institute of Technology:
Collins-type 10K cryocooler, 477
Flash-freezing process for ice cream, 621
Materials:
refrigerants (see Refrigerants)
regenerator (see Regenerators)
Matra Marconi coolers (see Astrium coolers)
Maya Heat Transfer Tech. (Canada), 307
Microcooler:
micromachined HX for cryosurgical probe, 505
micromachined J-T cold stage, 437
MIRI 6K hybrid PT/J-T cryocooler, 7, 21
MIT (see Massachusetts Institute of Technology)
Mitchell/Stirling, etched foil regenerator mat'l, 381
Mixed refrigerants (see Refrigerants, and J-T cryocoolers)
Nanohmics, Inc. miniature Stirling cooler, 95
NASA cryocooler program overview, 1
NASA/GSFC (see Goddard Space Flight Center)
NASA/JPL (see Jet Propulsion Laboratory)
Nat'l High Magnetic Field Laboratory (Florida):
helium liquefaction using PT cooler, 655
Nat'l Inst. for Materials Science (Tsukuba, Japan):
dysprosium gadol'um alum. garnet (DGAG), 637
multilayer ceramic regenerator mat'l, 367
magnetic refrig. for H\textsubscript{2} liquefaction, 637, 645
Nat'l Inst. of Adv. Indus. Sci. & Tech. (Japan), 277
Nat'l Inst. of Standards and Tech. (see NIST)
NAVSEA Naval Surface Warfare Center:
evaluation of total pressure oscillator losses, 353
NICMOS reverse-Brayton cooler, 4
Nissan Motor Co., GM cooler efficiency, 187
NIST:
evaluation of total pressure oscillator losses, 353
inertance tube char. using resonance effects, 263
rapid cooldown technique for PT coolers, 231
Northrop Grumman Space Tech. (previously TRW):
AIRS 55K PT coolers, 4, 618
6K ACTDP cooler development, 7, 21
10K 3-stage PT cryocooler, 27
77K-1.1W micro PT cooler, 89
HCC 35K/85K PT in DoD application, 602
HEC cooler performance, 605
Mini pulse tube coolers, 3
TES/OCO 60 K PT cryocooler, 4, 6, 619
Orbital-Engineering Co. (Japan), 277
Optical refrigerator history and overview, 539
Orientation, effect on performance:
convection in pulse tube coolers, 241
Osaka Univ. ADR for H\textsubscript{2} liquefaction, 645
Oxford Univ. (see Univ. of Oxford)
Performance estimator for cryocoolers, 563
Perovskites (see Refrigerants)
Phase change materials (see Thermal Storage)
Planck space mission:
JPL 20K-1W sorption cooler, 6, 497
Sub-Kelvin dilution refrigerator, 535
Praxair:
300W at 80K, 19% Carnot PT cooler, 141
Propellant liquefaction and densification (see Liquefaction of gases)
Pulse tube cryocoolers:
4K 3-stage Cryomech cryocooler, 163
9.5K 2W Friedrich-Schiller Univ., 171
10K 3-stage NGST, 27
20-40K 2-stage at Univ. of Giessen, 177
40K-0.5W PT cooler for IR detector, 83
40-80K high-heat-lift Air Liquide for space, 75
55K-1.5W AIRS, 4
65K-2.5W Fuji for HTS devices, 327
65K-280W high-freq PT cooler, 133
77K-1.1W NGST micro PT cooler, 89
80K-0.2W w/6mm dia. coaxial PT, 117
LM-ATC 6K ACTDP PT w/ flow loop, 33
LM-ATC 55K/140K GITS cooler, 7, 65
LM-ATC 110K PT w/ flow loop, 583
NGST 18 K precooler for ACTDP, 21
NGST 35K/85K HCC 2-stage PT, 602
NGST 60 K HEC 1-stage PT perf., 605
NGST 77K-1.1W micro PT cooler, 89
Praxair 300W at 80K, 19% Carnot, 141
Sunpower CPT60 60K-2W PT cooler, 123
thermoacoustic-driven PT coolers, 211, 219
Pulse tube theory and investigations:
1-D models of pulse tube cooler, 301
6mm diameter coaxial PT development, 117
AFRL analysis of pulse tube losses, 293
CFD model of reciprocating flow, 317
comparison of 2 types of PT/Stirling cycles, 249
Drexel Univ. low cost PT, 149
hybrid counterflow PT refrigerater, 257
hydrodynam. parameters of PT regenerators, 397
inertance tube char. using resonance effects, 263
integrated modeling tool for, 307
gridy effects on high-freq PT perf., 241
numerical sym. of regenerator in 2-stg PT, 405
phase shift measurement in PT regenerators, 411
rapid cooldown technique for PT coolers, 231
regenerator studies, generic (see Regenerators)
second-law based thermo optimization, 285
streaming of new type found in PT, 271
study of Gedeon DC flow loss, 205
third-stage cooling from 2-stage 4K PT, 157
total pressure oscillator losses, 353
transfer line, effect of large comp-PT dist., 225
Univ. of Giessen invest. of 2-stage PT, 177
visualization of 2nd flow in inclined PT, 277
Rafael, Ltd., 469
Rapid cooldown technique for PT coolers, 231
Rare earth compounds (see Regenerators)
Raytheon Space Systems (formerly Hughes Aircraft):
cryocooler selection for opt. payload perf., 605
hydrodynam. parameters of regenerators, 397
RS1 Stirling cooler performance, 605
Re recuperative heat exchangers (see Heat exchangers)
Refrigerants:
dysprosium gadol. alum. garnet (DGAG), 637
La(Fe,Si)\textsubscript{13} magnetic refrigerant, 555
Regenerators:
CFD model of reciprocating flow, 317
dimensional analysis for regenerator design, 419
etched foil material, tests of, 381, 389
hydrodynam. parameters of regenerators, 397
lead-plated wire mesh for low temp., 171
multilayer ceramic materials for, 367
numerical sym. of regenerator in 2-stg PT, 405
phase shift measurements in PT regenerators, 411
ribbon regenerator perf. in 1-stage GM, 373
Re-Liquefaction of gases (see Liquefaction of gases)
Remote cryogenic loads, cooling of using:
Create turbine circulator, 16, 17
hybrid PT/rev Brayton, 515
LM-ATC PT w/ flow loop, 33, 583
long PT transfer line, 225
low-pressure J-T bottom stage, 21, 41
rectified pulse tube, 573
Reverse-Brayton cryocoolers:
comparison with PT and Stirling coolers, 605
NICMOS operation on HST, 4
recuperative HX for space turbo-Brayton, 525
hybrid PT/rev Brayton for remote loads, 515
Ricor, Ltd.:
K508 cooler in space applications, 5
K527 miniature linear split Stirling, 105
Shanghai Inst. of Tech. Physics, 40K PT cooler, 83
Shinyoung Heavy Industries Co.:
cycles for re-liquefaction of LNG boil-off, 629
Sorption cryocoolers:
all-micromachined cold stage, 437
Darwin 4-5K 3mW sorption cooler, 487
Planck 20K-1W cooler FA testing, 497
Space cryocooler overviews:
AFRL space cryo research initiatives, 11
cryocooler selection for opt. payload perf., 605
DoD space sensor mission trade-offs, 595
NASA cryocooler mission summary, 1
Space Dynamics Laboratory, GIFTS PT testing, 65
Space instrument missions:
ABI, 7
AIRS, 4, 618
AMS-2, 6
ASTER, 3
CRISM, 5
Darwin, 487
GIFTS, 7, 65
HIRDLS, 5
Hyperion, 3
ISAMS, 2
Messenger, 5
MIRI (JWST), 7, 21
MOPITT, 3
NICMOS, 4
OCO, 6
Planck, 6, 497, 535
RHESSI, 3
Saber, 3
TES, 4, 618
Stirling cryocoolers:
Astrium/MMS 50-80K on MOPITT, 3
Ball 15K precooler for ACTDP hybrid, 41
Ball SB160 1-stage 60K Stirling perf., 605
Ball SB235 2-stage 35K Stirling perf. mapping, 57
Ball SB235E 2-stage 35K Stirling devel., 49
comparison of two types of Stirling cycles, 249
Oxford Univ. 80K ISAMS Stirling, 2
miniature CVD-based Stirling cooler, 95
Raytheon RS1 in space applications, 605
Ricor K508, 5
Ricor K527 mini linear split Stirling, 105
Sunpower M77B on RHESSI, 3
Sunpower M87 on AMS-2, 6
Sub-Kelvin coolers:
dilution refrigerator for Planck-HFI, 535
Sumitomo Heavy Industries:
Multilayer ceramic regenerator mat'l, 367
Sunpower, Inc.:
CPT60 60K-2W PT cooler, 123
etched foil regenerator material, 381
M77B Stirling cooler on RHESSI, 3
M87 Stirling cooler on AMS-2, 6
Superconductor applications (see Integration of cryocoolers with)
Switch, cryogenic thermal (see Heat switch)
TES cryocoolers in-space performance, 2, 4, 618
Thales Cryogenics:
40-80K high-heat-lift space PT cooler, 75
Thermal switch (see Heat switch)
Thermoacoustics:
expansion valve for recuperative systems, 429
nonzero time-averaged effects, 195
thermoacoustic-driven PT coolers, 211, 219
Throttle cycle (see J-T cryocoolers)
Tokyo Inst. of Tech., GM cooler efficiency, 187
Toshiba Corp.:
Gd-Y alloys for use in ADRs, 549
La(Fe,Si)\textsubscript{13} magnetic refrigerant study, 555
Transfer line (see Pulse tube theory and investigations)
TRW (see Northrop Grumman Space Tech.)
Turbo Brayton coolers (see reverse Brayton coolers)
U.S. Naval Academy, optical cooler summary, 539
Univ. of Alicante (Spain), 487
Univ. of Birmingham, flexure bearings, 335
Univ. of Giessen, 2-stg high-freq PT cryocooler, 177
Univ. of Michigan, micromachined HX, 505
Univ. of New Mexico,
analysis of pulse tube losses, 293
 thermo optimization criteria for PT, 285
SUBJECT INDEX

Univ. of Oxford:
 gas spring losses in linear compressors, 345
 ISAMS Oxford cooler performance, 2
 NGST 77K-1.1W micro PT cooler, 89
Univ. of Tsukuba, flow visualization in PT, 277
Univ. of Twente:
 all-micromachined J-T cold stage, 437
 Darwin 4.5K 5mW sorption cooler, 487
Univ. of Wisconsin:
 dimensional analysis for regenerator design, 419
 flow loop for remote cryogenic loads, 573
 mixed-gas J-T cooler for elect. current leads, 443
 micromachined HX for cryosurgical probe, 505
 multiplate recup. HX for hybrid cooler, 515
Zero-boil-off cryogen storage (see Liquefaction of gases)
Zhejiang Univ.:
 char. of iner. tubes using resonance effects, 263
 eval. of total pressure oscillator losses, 353