<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR (see Magnetic refrigerators)</td>
<td></td>
</tr>
<tr>
<td>Aerospace Corp., load shifting technique</td>
<td>89</td>
</tr>
<tr>
<td>AIM Infrarot Module GmbH</td>
<td></td>
</tr>
<tr>
<td>miniature flexure-bearing cryocooler</td>
<td>133</td>
</tr>
<tr>
<td>Air Force Research Lab (AFRL):</td>
<td></td>
</tr>
<tr>
<td>analysis of hybrid Brayton/Stirling cooler</td>
<td>479</td>
</tr>
<tr>
<td>exergy efficiency model for regenerators</td>
<td>353</td>
</tr>
<tr>
<td>LM RAMOS PT cooler characterization</td>
<td>39</td>
</tr>
<tr>
<td>numerical sym. of flow in inertance tube</td>
<td>261</td>
</tr>
<tr>
<td>prognostic health management system</td>
<td>637</td>
</tr>
<tr>
<td>Raytheon cooler maturation programs</td>
<td>31</td>
</tr>
<tr>
<td>thermal management system needs</td>
<td>647</td>
</tr>
<tr>
<td>Air Liquide DTA (France):</td>
<td></td>
</tr>
<tr>
<td>20K PT coldfingers for space</td>
<td>71</td>
</tr>
<tr>
<td>status of 40-80K space PT cryocoolers</td>
<td>115</td>
</tr>
<tr>
<td>AIRS cryocoolers in-space performance</td>
<td>613</td>
</tr>
<tr>
<td>Ames Research Center (NASA):</td>
<td></td>
</tr>
<tr>
<td>distributed cooling for boil-off reduction</td>
<td>631</td>
</tr>
<tr>
<td>Applications of cryocoolers (see Integration with cryocoolers)</td>
<td></td>
</tr>
<tr>
<td>Atlas Scientific:</td>
<td></td>
</tr>
<tr>
<td>distributed cooling for boil-off reduction</td>
<td>631</td>
</tr>
<tr>
<td>BAE Systems, AIRS instrument</td>
<td>613</td>
</tr>
<tr>
<td>Ball Aerospace coolers:</td>
<td></td>
</tr>
<tr>
<td>hybrid Stirling/J-T for variable loads</td>
<td>545</td>
</tr>
<tr>
<td>microplate recuperator</td>
<td>373</td>
</tr>
<tr>
<td>Boil-off reduction systems</td>
<td>631</td>
</tr>
<tr>
<td>Brayton cryocoolers (see Reverse-Brayton coolers)</td>
<td></td>
</tr>
<tr>
<td>Carleton Life Support Systems:</td>
<td></td>
</tr>
<tr>
<td>Stirling coolers for 3rd-gen. platforms</td>
<td>139</td>
</tr>
<tr>
<td>CEA/SBT (France):</td>
<td></td>
</tr>
<tr>
<td>2-stage PT coldfinger for 70K/140K</td>
<td>63</td>
</tr>
<tr>
<td>20K PT coldfingers for space</td>
<td>71</td>
</tr>
<tr>
<td>50mK ADR coupled to 'He sorption cooler</td>
<td>505</td>
</tr>
<tr>
<td>H\textsubscript{2} & Ne gas-gap heatswitch</td>
<td>553</td>
</tr>
<tr>
<td>nitrogen cryogenic loop heat pipe</td>
<td>525</td>
</tr>
<tr>
<td>pocket dilution cooler</td>
<td>497</td>
</tr>
<tr>
<td>thermal-mechanical heat switch</td>
<td>561</td>
</tr>
<tr>
<td>CEFITEC, portugal, gas-gap heat switch</td>
<td>553</td>
</tr>
<tr>
<td>CERN (Switzerland), PT vibration</td>
<td>687</td>
</tr>
<tr>
<td>CFD Modeling</td>
<td>241, 251</td>
</tr>
<tr>
<td>CIFIC-Qdrive, PT oxygen liquefier</td>
<td>681</td>
</tr>
<tr>
<td>Chesapeake Aerospace</td>
<td>55</td>
</tr>
<tr>
<td>Chinese Academy of Sciences, Cryogenics Lab:</td>
<td></td>
</tr>
<tr>
<td>300Hz 80K PT cryocooler</td>
<td>227</td>
</tr>
<tr>
<td>nitrogen cryogenic loop heat pipe</td>
<td>525</td>
</tr>
<tr>
<td>thermally coupled 2-stage PT cryocooler</td>
<td>79</td>
</tr>
<tr>
<td>two PTs for a single compressor</td>
<td>201</td>
</tr>
<tr>
<td>Clever Fellows Innovation Consortium (see CFIC-Qdrive)</td>
<td></td>
</tr>
<tr>
<td>CNES (French Space Agency):</td>
<td></td>
</tr>
<tr>
<td>70K/140K 2-stage PT coldfinger devel.</td>
<td>63</td>
</tr>
<tr>
<td>20K PT coldfingers for space</td>
<td>71</td>
</tr>
<tr>
<td>Compressors:</td>
<td></td>
</tr>
<tr>
<td>activated by piezoelectric elements</td>
<td>289, 441</td>
</tr>
<tr>
<td>AIM miniature flexure-bearing compressor</td>
<td>133</td>
</tr>
<tr>
<td>diaphragm pressure wave generator</td>
<td>309</td>
</tr>
<tr>
<td>proton conductive membrane compressor</td>
<td>299</td>
</tr>
<tr>
<td>Creare:</td>
<td></td>
</tr>
<tr>
<td>65K-100K 2-stage turbo-Brayton for space</td>
<td>461</td>
</tr>
<tr>
<td>drive electronics for tactical cryocoolers</td>
<td>597</td>
</tr>
<tr>
<td>drive electronics for turbo-Brayton cooler</td>
<td>471</td>
</tr>
<tr>
<td>fluid loop heat transport system</td>
<td>533</td>
</tr>
<tr>
<td>J-T cooler for distributed microcooling</td>
<td>433</td>
</tr>
<tr>
<td>Cryomech, Syracuse, NY:</td>
<td></td>
</tr>
<tr>
<td>diaphragm pressure wave generator</td>
<td>309</td>
</tr>
<tr>
<td>extracting cooling from 4K PT and regen.</td>
<td>177</td>
</tr>
<tr>
<td>Cryo Wave Adv. Technology, Inc.:</td>
<td></td>
</tr>
<tr>
<td>thermoacoustic expander for J-T systems</td>
<td>451</td>
</tr>
<tr>
<td>Diaphragm pressure wave generator</td>
<td>309</td>
</tr>
<tr>
<td>Dilution refrigerators:</td>
<td></td>
</tr>
<tr>
<td>CEA/SBT pocket dilution cooler</td>
<td>497</td>
</tr>
<tr>
<td>with direct PT precooling</td>
<td>491</td>
</tr>
<tr>
<td>Dutch Space, He/H\textsubscript{2} sorption cooler</td>
<td>23</td>
</tr>
<tr>
<td>Electronics, cooler drive:</td>
<td></td>
</tr>
<tr>
<td>Air Liquide, CDE for space PT</td>
<td>115</td>
</tr>
<tr>
<td>for 2-stage turbo-Brayton cooler</td>
<td>471</td>
</tr>
<tr>
<td>Raytheon low-cost space (LCSCE)</td>
<td>125</td>
</tr>
<tr>
<td>Raytheon for Stirling & PT coolers</td>
<td>607</td>
</tr>
<tr>
<td>universal for tactical coolers</td>
<td>597</td>
</tr>
<tr>
<td>European Space (ESA/ESTEC) activities:</td>
<td></td>
</tr>
<tr>
<td>20K PT coldfingers for space</td>
<td>71</td>
</tr>
<tr>
<td>50mK ADR coupled to 'He sorption cooler</td>
<td>505</td>
</tr>
<tr>
<td>on-chip detector cooling with MEMS J-T</td>
<td>405</td>
</tr>
<tr>
<td>Exergy flows (see Pulse tube theory and invest.)</td>
<td></td>
</tr>
<tr>
<td>Flexure bearing springs (see Compressors)</td>
<td></td>
</tr>
<tr>
<td>Flow loops (see Remote cryogenic loads, cooling of)</td>
<td></td>
</tr>
<tr>
<td>Friedrich-Schiller-Universität, Jena, Germany:</td>
<td></td>
</tr>
<tr>
<td>coldhead vibration of coaxial PT</td>
<td>687</td>
</tr>
</tbody>
</table>
Gas-gap heat switches (see Heat switches)
Georgia Institute of Tech.: CFD modeling of PT refrigerators, 241
hydrodynam. parameters of regenerators, 335, 343
Gifford-McMahon Cryocoolers: effect of regenerator material config., 317
Goddard Space Flight Center (NASA): characterization of ABI 2-stage PT, 55
superfluid He PT driven by magnetic pump, 519
Heat exchangers (see Recuperators)
Heat pipes: nitrogen cryogenic loop heat pipe, 525
Heat switches: CEA/SBT thermal/mech. heat switch, 561
H$_2$ & Ne gas-gap heat switch, 553
High temperature superconductor applications (see Integration of cryocoolers with)
HTS applications (see Integ. of cryocoolers with)
Hybrid multistage coolers: ADR coupled to 3He sorption cooler, 505
Ball hybrid Stirling/J-T for variable loads, 545
dilution with direct PT precooling, 491
hybrid Brayton/Stirling cooler, 479
Raytheon hybrid PT/Stirling, 31
Hydrides (see Sorption cryocoolers)
Hypres, Inc. 4K 4-stage PT cooler evaluation, 657
Indian Institute of Science, Bangalore:
numerical study of PT configurations, 271
Indian Institute of Technology:
PT with screen vs. tapered-finHX, 185
PT with inline vs. ‘U’ configuration, 209
Industrial Research Ltd., New Zealand:
diaphragm pressure wave generator, 309
Inertance tubes (see Pulse tube theory and invest.)
Integration of cryocoolers with:
aural undeuctable imagers, 587
cryogenic boil-off reduction, 631
cryogenic loop heat pipe, 525
cryosural probes, 387
drive electronics (see Electronics, cooler drive)
flow loops (see Remote cryogenic loads)
infrared focal planes, 405, 695
oxygen liquefier for aircraft carrier, 681
remote loads (see Remote cryogenic loads)
space instruments (see Space instruments)
superconducting magnet, 167, 665
twin-screw extruder for solid deuterium, 671
variable loads, 545
ITT Space Systems:
Characterization of ABI 2-stage PT, 55
Space qualification of ABI 2-stage PT, 49
Jackson & Tull, turbo-Brayton electronics, 471
J-T cryocoolers:
2-stage mixed-gas J-T cryoprobe system, 415
Ball hybrid Stirling/J-T for variable loads, 545
Creare J-T for distributed microcooling, 433
on-chip detector cooling for space, 405
mixed-refrigerant J-T microcooler, 425
NGST MIRI 6K cooler devel., 7
thermoacoustic expansion valve for, 451
performance study of miniature J-T cooler, 379
recuporators for (see Recuperators)
Japan Aerospace Exploration Agency (JAXA): 2-stage 20K Stirling cooler for space, 13
Jet Propulsion Laboratory (NASA):
MSL/CheMin cryocooler system, 621
AIRS cryocoolers, 6 years in space, 613
Johnson Research and Development: proton conductive membrane compressor, 299
Joule-Thomson Cryocoolers (see J-T cryocoolers)
Korea Basic Science Inst.:
cooling for superconducting magnet, 665
Korea Adv. Inst. of Science and Tech. (KAIST):
PT geometry effect on dynamic behavior, 217
PCHE-type recuperator with bypass, 363
Korea Electric Power Research Inst. (KEPRI), 217
Korea Univ., J-T cooler study, 379
Korea Inst. of Machinery and Materials, 379
L-3 Cincinnati Electronics coolers, 143
Lockheed Martin ATC (Palo Alto):
4K 4-stage PT cooler evaluation, 657
75K/130K RAMOS 2-stage PT cooler, 39
low-mag-field ADR for 100 mK sensors, 513
Magnetic refrigerators:
50mK ADR coupled to 3He sorption cooler, 505
low-mag-field ADR for 100 mK sensors, 513
Massachusetts Institute of Technology:
superfluid He PT driven by magnetic pump, 519
Materials (see Regenerators)
Mezzo Tech., microchannel recuperator, 397
MIRI 6K hybrid PT/J-T cryocooler, 7
MIT (see Massachusetts Institute of Technology)
Mixed refrigerants (see J-T cryocoolers)
NASA/GSFC (see Goddard Space Flight Center)
NASA/JPL (see Jet Propulsion Laboratory)
Nat'l Inst. of Standards and Tech. (see NIST)
National Instruments, Israel, 569
NIST:
IR imaging for PT characterization, 233
miniature 150Hz PT cryocooler, 105
mixed-refrigerant J-T microcooler, 425
piezoelectric J-T microcompressor, 441
PT cooler for superconducting magnet, 167
regenerators at 4K with 3He and 4He, 325
test facility for PT energy flows, 191
Northrop Grumman Space Tech. (previously TRW):
10K 3-stage PT performance, 1
77K-1.3W micro PT cooler, 97
ABI 2-stage PT cooler, 49, 55
AIRS 55K PT cooler, 6 years in space, 613
MIRI 6K hybrid PT/J-T cryocooler, 7
remote cooling with the HEC PT, 541
Piezoelectric activated compressor, 289, 441

Pulse tube cryocoolers:
- 20K CEA/Air Liquide PTs for space, 71
- 70K/140K 2-stage at CEA, 63
- Air Liquide 40-80K space PT cryocoolers, 115
- AIRS cryocoolers, 6 years in space, 613
- CFC-Qdrive, oxygen liquefier, 681
- LM-ATC 4K 4-stage PT evaluation, 657
- LM-ATC 75K/130K RAMOS cooler, 39
- NGST 2-stage PT for ABI, 49, 55
- NGST 6K MIRI hybrid PT/J-T cryocooler, 7
- NGST 10K 3-stage PT performance, 1
- NGST 77K-1.3W micro PT cooler, 97
- NIST miniature 150Hz PT cryocooler, 105
- NIST 50W at 50K for supercond. magnet, 167
- Raytheon hybrid Stirling/PT, 31
- Raytheon low cost space cryocooler system, 125
- Thales 15W at 80K space PT cooler, 157
- thermoacoustic-driven PT coolers, 227

Pulse tube theory and investigations:
- 300Hz 80K PT cryocooler, 227
- CFD modeling of PT refrigerators, 241, 251
- coldhead vibration of coaxial PT, 687
- exergy efficiency model for regenerators, 353
- extracting cooling from 4K PT and regen., 177
- geometry effect on PT dynamic behavior, 217
- inline versus ‘U’ configuration, 209
- IR imaging as a means of characterization, 233
- modeling 2-stage PT performance, 55
- numerical study of PT configurations, 271
- numerical sym. of flow in inerter tube, 261
- proton conductive membrane compressor, 299
- regenerator studies (see Regenerators)
- screen vs. tapered-fin heat exchanger, 185
- superfluid He PT driven by magnetic pump, 519
- test facility for PT energy flows, 191
- thermally-coupled 2-stage PT cryocooler, 79
- thermoconductivity role in PT perf., 281
- two PT coldheads driven by one compressor, 201
- Zhejiang Univ. study of 1-stage PT cooler, 149

Raytheon Space and Airborne Systems:
- analysis of hybrid Brayton/Stirling cooler, 479
- CFD modeling of PT refrigerators, 241
- drive electronics for turbo-Brayton cooler, 471
- fluid loop heat transport system, 533
- ground testing of space IR sensor, 695
- hybrid Stirling/PT cooler devel. programs, 31
- hydrodynam. regenerator parameters, 335, 343
- low cost space cryocooler (LCSC) testing, 125
- proton conductive membrane compressor, 299
- test of 2-stage turbo-Brayton for space, 461

Recuperators:
- Ball Aerospace microplate, 373
- microchannel for reverse-Brayton, 397
- micromachined for cryosurgical probe, 387
- numerical study of J-T TX, 379
- PCHE-type with transverse bypass, 363

Regenerators:
- effect of material config. on 4K GM, 317
- exergy efficiency model for, 353
- hydrodynam. parameters of regenerators, 335, 343
- low-porosity at 4K with 3He and 4He, 325

Reliability analysis of cryocoolers:
- L-3 Cincinnati Electronics coolers, 143
- prognostic health management system, 637

Remote cryogenic loads, cooling of via:
- Ball hybrid Stirling/J-T, 545
- Create turbine circulator, 533
- hybrid Brayton/Stirling cooler, 479
- NGST HEC PT w/ flow loop, 541
- NGST MIRI 6K hybrid PT/J-T cryocooler, 7

Reverse-Brayton cryocoolers:
- 65K-100K 2-stage for space applications, 461
- analysis of hybrid Brayton/Stirling cooler, 479
- drive electronics for, 471
- recuperators for (see Recuperators)

Soret, Ltd.:
- CFD modeling of PT refrigerators, 251
- design of aural undetectable imagers, 587
- K508 in MSL/CheMin instrument, 621
- K535-LV for vibration-free applications , 569
- miniature 150Hz PT cryocooler, 105
- S2 Corp., Bozeman, MT: low vibration, low thermal noise system, 581
- Sest, Inc., prognostic health managm't system, 637
- Shanghai Jiao Tong Univ., 325

Sorption cryocoolers:
- 4.5K 5mW He/H2 sorption cooler, 23

Space instrument missions:
- ABI, 49, 55
- AIRS, 613
- AKARI, 13
- MIRI (JWST), 7
- MSF/CheMin, 621
- NEXT, 13
- SPICA, 13
- thermal management system needs, 647

Stirling cryocoolers:
- AIM miniature flexure-bearing cooler, 133
- analysis of hybrid Brayton/Stirling cooler, 479
- Ball hybrid Stirling/J-T for variable loads, 545
- CLSS tactical coolers for 3rd-gen. platforms, 139
- Japan 2-stage 20K cooler for space, 13
- L-3 Cincinnati Electronics coolers, 143
- load shifting technique for multistages, 89
- Raytheon hybrid Stirling/PT coolers, 31
- Ricor K508, 621

Sub-Kelvin coolers:
- ADR coupled to He sorption cooler, 505
- CEA/SBT pocket dilution cooler, 497
- dilution with direct PT precooling, 491
- low-mag-field ADR for 100 mK sensors, 513

Sumitomo Heavy Industries:
- 2-stage 20K Stirling cooler for space, 13
- Superfluid He PT driven by magnetic pump, 519

Superconductor applications (see Integration of cryocoolers with)
Switch, cryogenic thermal (see Heat switch)

Technion, Haifa, Israel:
- CFD modeling of PT refrigerators, 251
- IR imaging for PT characterization, 233
- miniature 150 Hz PT cryocooler, 105
- piezoelectric activated compressor, 289

Thales Cryogenics:
- 15 W at 80 K space PT cooler, 157

Thermoacoustic coolers:
- 300 Hz 80 K PT cryocooler for, 227
- thermoacoustic expander for J-T system, 451

Throttle cycle (see J-T cryocoolers)

Tokyo Inst. of Tech.:
- effect of regen. mat'l config. on 4 K GM, 317
- Toshiba Corp.:
- effect of regen. mat'l config. on 4 K GM, 317

Transfer line (see Pulse tube theory and investigations)

TRW (see Northrop Grumman Space Tech.)

Turbo Brayton coolers (see reverse Brayton coolers)

Univ. of Colorado, Boulder:
- mixed-refrigerant J-T microcooler, 425
- piezoelectric J-T microcompressor, 441

Univ. of Giessen, Germany:
- thermally-coupled 2-stage PT cryocooler, 79

Univ. of Michigan, Ann Arbor:
- distributed cooling for boil-off reduction, 631

Univ. of New Mexico:
- exergy efficiency model for regenerators, 353
- numerical sym. of flow in inertance tube, 261

Univ. of Tsukuba, Japan:
- 2-stage 20 K Stirling cooler for space, 13

Univ. of Twente, The Netherlands:
- 4.5 K 5 mW He/H2 sorption cooler, 23
- on-chip detector cooling with MEMS J-T, 405

Univ. of Wisconsin, Madison:
- 2-stage mixed-gas J-T cryoprobe system, 415
- distributed cooling for boil-off reduction, 631
- GM-cooled twin-screw extruder, 671
- IR imaging for PT characterization, 233
- micromachined HX for cryosurgical probe, 387
- PT cooler for superconducting magnet, 167
- study of 1-stage PT cryocooler, 149
- test facility for PT energy flows, 191

Veermata Jijabai Tech. Institute, India, 209

Vibration and acoustic noise:
- coldhead vibration of coaxial PT, 687
- design of aural undetectable imagers, 587
- low vibration, low thermal fluctuation sys., 581
- Ricor K535-LV vibration-free Stirling cooler, 569

Virtual Aerosurface Tech.:
- CFD modeling of PT refrigerators, 241
- hydrodynam. parameters of regenerators, 343

Walther Meissner Institute, 491

Zhejiang Univ.:
- miniature 150 Hz PT cryocooler, 105
- study of 1-stage PT cryocooler, 149