Subject Index

Adv. Mobile Telecommunication Tech., Inc., 279
Aerospace Corporation:
 CSIM system design model, 1, 861
 flexure bearing design, 413
 spacecraft integration trades, 873
 thermal storage unit, 747
Air Liquide pulse tube, 223
AIRScryocooler development, 195, 885, 895
Alabama Cryogenic Engineering, 653

Algorithms and analysis methods:
 comparison of PT & Stirling perform., 431
 cooler BOL/EOL sizing analysis, 885
 cryogenic system design, 861, 885
 etched foil regenerator flow, 451
 flexure bearing design charts, 413
 flow visualization in pulse tubes, 355, 365
 heat transfer coef. in high-NTU matrices, 441
 periodic temp. variation technique, 441
 piston resonance characteristics, 421
 piston (warm expander) pulse tube, 309, 319
 pseudo-Ericsson cycle G-M, 643
 pulse tube performance model, 327, 345, 431
 pulse tube heat and mass flows, 335, 345
 Stirling-cycle performance model, 147, 431
 transient cryocooler thermal perf., 163
 vibration control, 727

Ames Research Center (NASA), 327, 345
Ames Laboratory (Iowa State Univ.), 663, 669
APD Cryogenics:
 65K two-stage MR/O₂ refrig., 537
 Cryotiger J-T cooler:
 performance with mixed gases, 515
 vibration of, 737
 integration with SQUIDS, 925
 cost reduction improvements, 521
 with Neon for application at 25K, 547
 Early pulse tube developments, 261
Applications of cryocoolers:
 cryoelectronics, 97, 509
 high temperature superconductors (see HTS applications)
 IR focal planes, 885
 liquefaction of nitrogen, 157, 247
 magnetocardiography using SQUIDS, 727
 mine-sweeping magnets, 627, 653, 813
 nondestructive eval. using SQUIDS, 925
 space instruments (see Space instruments)
 weapons systems, 17
Applied Superconductivity Center, 547
ARCOPTR, 327

Ball Aerospace cryocoolers:
 2W-55K single-stage AFP Stirling, 55
 30K two-stage Stirling, 11, 69
 35K/60K three-stage Stirling, 1
 77K closed-cycle J-T COOLLAR, 493

Bearings:
 Aerospace flexure, 413
 MTI linear journal, 403
 BEI mini-linear cooler, 119
 BETSCE, 567, 577
 Brayton cycle cryocoolers, 1, 465, 475, 485

British Aerospace (BAe) cryocoolers (see Matra Marconi Space cryocoolers)

CDNSWC (see Naval Surface Warfare Center)
CEA/CENG (France):
 50-80K pulse tube development, 213

Characterization testing:
 APD Cryotiger J-T, 737, 925
 Ball 2W-55K cryocooler, 55
 Ball 30K Stirling cooler, 69
 Ball 77K closed-cycle COOLLAR, 493
 Creare 65K SSC Stirling, 45
 Creare 5W-65K reverse-Brayton, 465
 data acquisition software for, 853
 gas-gap heat switch, 795
 Hughes SSC I & II, 35
 MMS/RL two-stage Stirling, 79, 89
 Texas Instruments 1W-80K, 127, 163
 TRW 3503 & 6020 P T cryocoolers, 173, 183

Charcoal sorbents, 597
Chinese Academy of Sciences, 529

COM DEV (MOPITT cooler vib.), 711

Compressors:
 charcoal sorption, 597
 J-T oil lubricated, 493
 MTI linear diaphragm, 403

Conductance measurements:
 demountable interface, 813, 823
 stacked screens, 459
 tension band cryo support, 773

Convection in pulse tube vs. angle, 183, 393

963
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooldown behavior modeling, 163</td>
</tr>
<tr>
<td>COOLLAR, 493</td>
</tr>
<tr>
<td>Cornell Univ., 431</td>
</tr>
<tr>
<td>Creare Cryocoolers:</td>
</tr>
<tr>
<td>5W-65K reverse-Brayton, 1, 465</td>
</tr>
<tr>
<td>65K SSC Stirling cooler, 45</td>
</tr>
<tr>
<td>miniature reverse-Brayton, 475</td>
</tr>
<tr>
<td>Cryocooler applications (see Applications of cryocoolers)</td>
</tr>
<tr>
<td>Cryocooler integration technologies (see Integration of cryocoolers)</td>
</tr>
<tr>
<td>Cryogenerator with two-component, two-phase fluid, 157</td>
</tr>
<tr>
<td>CryoTiger:</td>
</tr>
<tr>
<td>cost reduction activities, 521</td>
</tr>
<tr>
<td>integrated with SQUIDs, 925</td>
</tr>
<tr>
<td>performance with various refrigerants, 515</td>
</tr>
<tr>
<td>vibration of, 737</td>
</tr>
<tr>
<td>CSIM cryosystem design software, 1, 861</td>
</tr>
<tr>
<td>CTI-Cryogenics, 607</td>
</tr>
<tr>
<td>Daido Hoxan:</td>
</tr>
<tr>
<td>pulse tube with active buffer, 247</td>
</tr>
<tr>
<td>pulse tube with long neck tube, 269</td>
</tr>
<tr>
<td>DARPA, 25</td>
</tr>
<tr>
<td>DC flow, effect on P-T and Stirling efficiency, 385</td>
</tr>
<tr>
<td>DECS vibration controller, 711</td>
</tr>
<tr>
<td>Diaphragm compressor:</td>
</tr>
<tr>
<td>Creare Stirling, 45</td>
</tr>
<tr>
<td>MTI hydraulic driven, 403</td>
</tr>
<tr>
<td>DoD linear tactical coolers, 17</td>
</tr>
<tr>
<td>Ecole Normale Superieure, 223</td>
</tr>
<tr>
<td>Electric field emissions (see EMI/EMC measurements)</td>
</tr>
<tr>
<td>Electro Thermo Associates, 309</td>
</tr>
<tr>
<td>Electromagnetic interference (see EMI/EMC measurements)</td>
</tr>
<tr>
<td>Electronics:</td>
</tr>
<tr>
<td>cooler drive and control, 705, 841, 895</td>
</tr>
<tr>
<td>EMI/EMC measurements:</td>
</tr>
<tr>
<td>Ball 77K closed-cycle COOLLAR, 493</td>
</tr>
<tr>
<td>TRW 3503 P-T cryocooler, 183</td>
</tr>
<tr>
<td>with SQUID applications, 925, 935</td>
</tr>
<tr>
<td>Erbium regenerator materials, 79, 617, 663, 669</td>
</tr>
<tr>
<td>European Space (ESA) activities:</td>
</tr>
<tr>
<td>RAL/MMS 2-stg Stirling, 79, 89</td>
</tr>
<tr>
<td>50-80K pulse tube development, 213</td>
</tr>
<tr>
<td>50-80K Stirling applications, 59</td>
</tr>
<tr>
<td>Feed forward vibration controller, 705, 711, 727</td>
</tr>
<tr>
<td>Flex strap design and test, 807, 885, 917</td>
</tr>
<tr>
<td>Flexure bearings, 413</td>
</tr>
<tr>
<td>Focal plane dewars, 885</td>
</tr>
<tr>
<td>Fokker Space radiant cooler, 917</td>
</tr>
<tr>
<td>Forschungszentrum Juelich, 925</td>
</tr>
<tr>
<td>Forschungszentrum Karlsruhe, 255</td>
</tr>
<tr>
<td>Gas effects on piston resonance, 421</td>
</tr>
<tr>
<td>Gas-gap heat switches, 795</td>
</tr>
<tr>
<td>Gedeon Associates, 385</td>
</tr>
<tr>
<td>General Atomics, 813</td>
</tr>
<tr>
<td>Generated vibration measurements (see Vibration, cooler generated)</td>
</tr>
<tr>
<td>Georgia Institute of Technology, 335</td>
</tr>
<tr>
<td>Gifford-McMahon Cryocoolers:</td>
</tr>
<tr>
<td>2W-4K with Erbium regenerator materials, 617</td>
</tr>
<tr>
<td>geometric scaling of, 627</td>
</tr>
<tr>
<td>low-cost for HTS applications, 607</td>
</tr>
<tr>
<td>low-temperature regenerators for, 653, 663, 669</td>
</tr>
<tr>
<td>neodymium plate regenerator for, 653</td>
</tr>
<tr>
<td>temperature stabilization of, 765</td>
</tr>
<tr>
<td>valve pressure loss effects, 637</td>
</tr>
<tr>
<td>valve timing effects, 643</td>
</tr>
<tr>
<td>Goddard Space Flight Center:</td>
</tr>
<tr>
<td>30K Ball cooler development, 11</td>
</tr>
<tr>
<td>Sunpower M77 cooler vibration, 697</td>
</tr>
<tr>
<td>HTS applications:</td>
</tr>
<tr>
<td>cooler program overview, 25</td>
</tr>
<tr>
<td>filter resonators, 97, 521, 607</td>
</tr>
<tr>
<td>large motors, 943</td>
</tr>
<tr>
<td>magnetocardiography, 727</td>
</tr>
<tr>
<td>magnets, 547</td>
</tr>
<tr>
<td>nondestructive evaluation (NDE), 925</td>
</tr>
<tr>
<td>SQUIDS, 727, 765, 925, 935</td>
</tr>
<tr>
<td>Heat conduction (see Conductance measurements)</td>
</tr>
<tr>
<td>Heat interceptor:</td>
</tr>
<tr>
<td>with Hughes SMTS cooler, 783</td>
</tr>
<tr>
<td>with MMS/RAL 2-stg Stirling, 79</td>
</tr>
<tr>
<td>Heat pipes, cryogenic, 831</td>
</tr>
<tr>
<td>Heat switches, 795</td>
</tr>
<tr>
<td>High temperature superconductor applications (see HTS applications)</td>
</tr>
<tr>
<td>Hong Iak University, 147</td>
</tr>
<tr>
<td>Hughes Aircraft:</td>
</tr>
<tr>
<td>cooler drive electronics, 841</td>
</tr>
<tr>
<td>heat interceptor integration, 79, 783</td>
</tr>
<tr>
<td>LCC low-cost pulse tube, 229</td>
</tr>
<tr>
<td>PSC 60K Stirling cooler, 1, 29</td>
</tr>
<tr>
<td>pulse tube research, 285, 335</td>
</tr>
<tr>
<td>SSC I & II space coolers, 35</td>
</tr>
<tr>
<td>vibration suppression of ISSC, 705</td>
</tr>
<tr>
<td>Hydraulic driven compressor, 403</td>
</tr>
<tr>
<td>Hydride materials:</td>
</tr>
<tr>
<td>in sorption coolers, 567, 577, 587</td>
</tr>
<tr>
<td>to actuate heat switch, 795</td>
</tr>
<tr>
<td>Hymatic, Stirling cooler, 109</td>
</tr>
<tr>
<td>ILK, 925</td>
</tr>
<tr>
<td>Indian Institute of Technology, 157</td>
</tr>
<tr>
<td>Innovative Research Inc., 451</td>
</tr>
<tr>
<td>Integration of cryocoolers with:</td>
</tr>
<tr>
<td>4K superconducting magnets, 627, 653, 813</td>
</tr>
<tr>
<td>cryogenic heat pipes, 831</td>
</tr>
<tr>
<td>data acquisition system, 853</td>
</tr>
<tr>
<td>demountable thermal interface, 813, 823</td>
</tr>
<tr>
<td>flexible diode heatpipe, 1</td>
</tr>
<tr>
<td>flexible thermal link, 807, 885, 917</td>
</tr>
<tr>
<td>flight electronics, 711, 841</td>
</tr>
</tbody>
</table>
focal plane dewars, 885
heat interceptor, 79, 783
HTS applications (see HTS applications)
integrated thermal bus, 1
multilam make-break interface, 823
photoconductive detectors at 4K, 949
phase change materials, 747
space experiments (see Space experiments)
space instruments (see Space instruments)
SQUIDS, 727, 765, 925, 935
systems integration software (CSIM), 1, 861
temperature stabilization system, 747, 765
tension-hand cryo load support, 773
thermal storage, 747
thermal switch, 795

J-T cryocoolers:

- 10K SH, sorption, 567, 577
- APD 65K 2-stg MR/O, refrig., 537
- APD CryoTiger, 515, 521, 737, 925
- Ball 77K closed-cycle COOLLAR, 493
- BETSCE flight experiment, 567, 577
- charcoal/nitrogen sorption, 577
- heat exchangers for, 547
- micromachined cooler, 687
- mixed-refrigerant experiments in China, 529
- MMR Technologies, 509
- Neon for HTS applications at 25K, 547
- pressure fluctuations in, 737
- RAL/MM 2-4 k closed cycle, 949
- STC integral J-T/Stirling for 4.5K, 557
- use with SQUIDS for NDE, 925
- vibration of APD CryoTiger, 737, 925

Jet Propulsion Laboratory:

- AIRS cryocooler system design, 885
- astrophysics applications, 577
- BETSCE, 567, 577
- gas-gap heat switch, 795
- piston resonance characteristics, 421
- sorption coolers, 567, 577, 587
- TRW pulse tube cooler testing, 183
- UCSB balloon experiment, 577, 587
- Joule-Thomson Cryocoolers (see J-T cryocoolers)
 - Kleemenko cycle, 509
 - Korea Inst. of Mach. and Materials, 239
 - Korea Adv. Institute of Science and Tech., 239
 - Lanthanide regenerator materials, 675
 - LASSOR optical refrigerator, 681

Life test results:
 - Creare 5W-65K reverse-Brayton, 465
 - Linear motor, Hymalk design, 109
 - Liquefaction of nitrogen, 157, 247
 - Lockheed Martin IR Imaging Systems:
 - AIRS cryocooler system design, 885
 - Lockheed Martin Palo Alto Research Center:
 - 35K/60K pulse tube development, 1
 - MOPITT cryocooler electronics, 711
 - Los Alamos National Laboratory:
 - optical refrigerator, 681
 - cryo heat pipes, 831

Magnetic field emissions, 935
Magnetic refrigerators:
 - refrigerant materials for, 675
Matra Marconi Space cryocoolers:
 - 2-stage Stirling enhancements, 79
 - 4K closed-cycle J-T cryocooler, 949
 - 50-80K Stirling cooler, 59
 - 50-80K pulse tube development, 213
electronics for, 711
flight applications of, 59

Microcooling, 687
MITEC, Mech. Engineering Lab, 355, 365
Mitsubishi Electric, 617, 643
Mixed refrigerants (see Refrigerants, mixed gases)
MMR Technologies, 509
Modeling (see Algorithms and analysis methods)
MOPITT cooler vibration evaluation, 711
Moscow State University, 675
MTI, hydraulic diaphragm compressor, 403

Nat'l Inst. of Standards and Tech. (see NIST)
Naval Research Laboratory, 25
Naval Surface Warfare Center:
 - cryo heat pipes, 831
demountable thermal interface, 813
G-M refrigerator scaling, 627
neodymium plate regenerator, 653
thermal conductance of multilam, 823
neodymium plate regenerator, 653
neon for J-T cooling to 25K, 547
Night Vision cooler program, 17
Nihon University:
 - PT with active buffer, 247
 - PT with long neck tube, 269
NIST:
 - pulse tube modeling, 345
 - regenerator research, 441, 451
conduction through screens, 459
Nitrogen liquefier:
 - pulse tube, 247
Stirling with 2-component 2-phase fluid, 157
Nitrogen trifluoride, 747
Nondestructive evaluation (NDE), 925

Off-state conduction of pulse tube, 183, 393
Optical refrigerator, 681

Phase change materials, 747
Phillips Lab (USAf):
 - Creare 5W-65K Brayton tests, 465
 - Creare 65K SSC Stirling tests, 45
data acquisition software, 853
Hughes SSC I & II tests, 35
program overview, 1
STRV-2 flight experiment, 127, 905
thermal storage unit, 747
transient cooldown modeling, 163
Piston pulse tube, 309, 319
Piston suspension:
 hydraulic journal bearings, 403
 spring flexure bearings, 109, 413
 resonance characteristics, 421
Piston vibration:
 lateral motion during operation, 69
 stroke motion during launch, 69, 421
Pulse tube cryocoolers:
 50-80K European development, 213
 French developments, 213, 223
 Hughes LCC, 229
 Karlsruhe 2-stage 10K, 255
 Korean experimental, 239
 TRW 3503, 1, 173, 183
 TRW 6020, 1, 173, 183
 TRW AIRS cryocooler, 195, 885, 895
 TRW miniature, 1, 203
Pulse tube theory and investigations:
 active buffer system, 247
 convection effects vs. angle, 183, 393
dc flow, effect of, 385
 early pulse tube developments, 261
 effect of pulse tube geometry, 285
 flow visualization within, 355, 365
 heat pumping versus frequency, 375
 Korean, 239
 long-neck tube, 269
 modeling of high frequency, 335
 off-state conduction vs. angle, 183, 393
 performance modeling, 203, 431
 piston pulse tube modeling, 309, 319
 reverse-Brayton expander, use as, 485
two parallel pulse tubes, 295
 UCLA research overview, 301
 waveform shaping using relief valves, 279

Queen Mary & Westfield College, 949
RAL (see Rutherford Appleton Laboratory)
Rare earth compounds, 617, 663, 669, 675
Refrigerants:
 for magnetic refrigerators, 675
 mixed gases, 509, 515, 529
Refrigeration performance:
 APD CryoTiger J-T, 521
 Ball 2W-55K Stirling, 55
 Ball 30K two-stage Stirling, 69
 BEI mini-linear Stirling, 119
 Creare 5W-65K reverse-Brayton, 465
 Creare 65K SSC diaphragm Stirling, 45
 Hughes 60K PSC, 29
 Hughes ISSC with heat strap, 783
 Hughes SSC I & II, 35
 Hymatic 80K Stirling, 109
 overview comparison, 873
 RAL/MMS 2-stg Stirling, 79, 89
 Texas Instruments 1W-80K, 127, 163
 TRW 3503 and 6020 pulse tubes, 173, 183
 TRW miniature pulse tube, 203
REGEN3, 327
Regenerator:
 conductance of stacked screens, 459
 etched foil modeling, 451
 heat transfer in high-NTU matrices, 441
 neodymium plate for G-M, 653
 optimization for 20K Stirling, 79
 optimization for 2W-4K G-M, 617
 rare earth materials for, 79, 617, 663, 669, 675
 reduction of heat pumping, 139
Reliance Electric, 943
Reverse-Brayton refrigerators:
 Creare 5W-65K, 465
 Creare miniature, 475
 with pulse tube as expander, 485
Requirements for space applications, 905
Resonance of compressor pistons, 421
Rutherford Appleton Laboratory:
 2-stage Stirling enhancements, 79
 50-80K pulse tube development, 213
 integration of PC detectors at 4K, 949
SADA cooler assemblies, 17
Schafer, W. J. Associates, 719
SCIAMACHY radiant cooler, 917
Signaal USFA:
 7058 tactical cryocooler, 935
 reduction of heat pumping, 139
Silicon micromachined cooler, 687
SMTS, 1, 783
Software:
 Aerospace CSIM model, 1, 861
 lab data acquisition, 853
Sorption cryocooler:
 10K and below, 567, 577
 APD 2-stg MR/O, testing, 537
 BETSCE flight demonstration, 567
 charcoal/nitrogen, 597
 UCSB balloon experiment, 577, 587
Sorption pump, for gas-gap, 795
Space experiments:
 BETSCE, 567, 577
 STRV vibration suppression, 719
 STRV-2, 127, 905
Space instruments:
 AIRS, 195, 885, 895
 cooler integration trades for, 873
 FIRST, 89
 MOPITT, 711
 SCIAMACHY, 917
 SMTS, 1, 873
 UCSB balloon, 577, 587
Spring flexure optimization, 413
SQUIDS, integration with, 727, 765, 925, 935
Startech, 813, 831
Stirling cryocoolers:
 Ball 2W-55K single-stage AFP, 55
 Ball 30K two-stage, 69
 Creare 65K SSC w/diaphragms, 45
 Hughes 60K PSC, 1, 29
 Hughes ISSC, 705, 783
Hughes SSC I & II, 35
Hymatic 80K, 109
MMS 50-80K, 59
MMS/RL 2-stage 20K, 79, 89
Signaal USFA tactical, 139, 935
STC combined with 4.5K J-T, 557
STI HTS, 97
Sunpower M77 cooler vibration, 697
Texas Instruments 1W-80K, 17, 127, 163, 905
U.S. Army cooler program, 17
Stirling cooler theory and investigations:
analysis with gas-wall heat transfer, 147
flexure bearings for, 413
magnetic interference of, 935
micromachined miniaturization, 687
performance modeling, 431
reduction in heat pumping, 139
regenerator optimization, 451
two-component two-phase working fluid, 157
vibration control of, 727
Stirling Technology Co., 557
STRV, 127, 905, 719
Sumitomo Heavy Industries, 637, 765
Sunpower M77 cooler vibration, 697
Superconductor applications (see HTS applications)
Superconductor Technologies Inc., 97
Swales & Associates, 1, 747

Tactical Stirling cryocoolers:
BEI mini-linear, 119
Hymatic, 109
reduction of heat pumping, 139
Signaal USFA, 139, 935
space application of, 127, 719, 905
Texas Instruments, 127, 163, 719, 905
U.S. Army cooler program, 17
vibration reduction of, 719, 727
Temperature Stabilization of G-M, 765
Tension-band support for cryo loads, 773
Texas Instruments tactical Stirling coolers:
1W-80K cooldown characteristics, 163
1W-80K qualification for STRV-2, 127
in STRV flight experiments, 127, 719, 905
Thermal conductivity (see Conductance measurements)
Thermal storage, 60K, 747
Thermal switch, 795
Throttle-cycle (see J-T cryocoolers)
Transient cooldown, modeling of, 163
TRW cryocooler activities:
3503 and 6020 pulse tubes, 1, 173, 183
AIRS pulse tube, 195, 885, 895
miniature pulse tube, 1, 203
Turbo Brayton cryocoolers, 1, 465, 475
Turboalternator, 475

Ukraine Academy of Sciences, 529
Univ. Complutense of Madrid, 925
Univ. of California, UCLA, 301
Univ. of California, UCSB, 577, 587
Univ. of Colorado, Boulder, 345, 441
Univ. of Giessen, 393
Univ. of Karlsruhe, 255
Univ. of Oxford, 319
Univ. of Southampton, 375
Univ. of Toronto, 711
Univ. of Tsukuba, 355, 365
Univ. of Twente, 597, 727, 935
Univ. of Wisconsin, 295, 547
Utah State University, 773, 807
Valve optimization for 4K G-M, 637, 643
Valve optimization for 80K pulse tube, 247
Vibration, cooler generated:
absorber for controlling, 109
algorithms for controlling, 705, 727
effect on PC detectors at 4K, 949
electronics for controlling, 697, 711, 719
flight experiment results, 719
individual cooler vibration test results:
APD CryoTiger, 521, 737
Ball 2W-55K single-stage AFP, 55
Ball 30K two-stage, 69
Ball COOLLAR J-T, 493
Hughes ISSC, 705
Hymatic 80K, 109
MOPITT with MMS 50-80K, 711
Sunpower M77, 697
Texas Instruments 0.2W-80K, 719
Texas Instruments 1W-80K, 127
TRW 3503 and 60K pulse tubes, 173, 183
Vibration, external input:
piston motion during launch, 69, 421