Cryocoolers 14 Table of Contents

Government Cryocooler Development Programs

1An Overview of NASA Space Cryocooler Programs

R. Ross, NASA/JPL, Pasadena CA; R. Boyle, NASA GSFC, Greenbelt MD

11AFRL Space Cryogenic Technology Research Initiatives

F. Roush and T. Roberts, AFRL, Kirtland AFB, NM

Space Cryocoolers for 4-18 K Applications

21NGST Advanced Cryocooler Technology Development Program (ACTDP) Cooler System

D. Durand, R. Colbert, C. Jaco, M. Michaelian, T. Nguyen, M. Petach, and E. Tward,
NGST, Redondo Beach, CA

2710K Pulse Tube Cooler

T. Nguyen, R. Colbert, D. Durand, C. Jaco, M. Michaelian and E. Tward, NGST, Redondo Beach, CA

33Development of Remote Cooling Systems for Low-Temperature, Space-Borne Systems

T. Nast, J. Olson, E. Roth, B. Evtimov, D. Frank, and P. Champagne, Lockheed Martin ATC, Palo Alto, CA

41Ball Aerospace 4-6 K Space Cryocooler

D. Glaister, W. Gully, P. Hendershott, E. Marquardt, V. Kotsubo,
Ball Aerospace, Boulder, CO; R. Ross, Jr, NASA/JPL, Pasadena, CA

20 to 80 K Space Stirling and Pulse Tube Cryocoolers

49Ball Aerospace Next Generation Two-Stage 35 K Coolers: The SB235 and SB235E

W. Gully, D. Glaister, P. Hendershott, V. Kotsubo, J. Lock, and E. Marquardt, Ball Aerospace, Boulder, CO

57Multistage Stirling Cycle Refrigeration Performance Mapping of the Ball SB235 Cryocooler

T. Roberts and A. Razani, AFRL, Kirtland AFB, NM

65Thermal/Mechanical System Level Test Results of the GIFTS 2-Stage Pulse Tube Cryocooler

S. Jensen, G. Hansen, Utah State Univ., North Logan, UT; T. Nast,
E. Roth, B. Clappier, Lockheed Martin ATC, Palo Alto, CA

75Design of a Large Heat Lift 40 K to 80 K Pulse Tube Cryocooler for Space Applications

T. Trollier, J. Tanchon, J. Buquet, A. Ravex, Air Liquide, Sassenage, France; I. Charles,
A. Coynel, L. Duband, E. Ercolani, L. Guillemet, CEA, Grenoble, France; J. Mullié, J. Dam,
T. Benschop, THALES Cryogenics, The Netherlands; M. Linder, ESA/ESTEC, The Netherlands

83Development of a 0.5 W/40 K Pulse Tube Cryocooler for an Infrared Detector

G. Wang, J. Cai, W. Jing, L. Yang, and J. Liang, N. Li, Chin. Acad. of Sci., China

89Pulse Tube Microcooler for Space Applications

M. Petach, M. Waterman, E. Tward, NGST, Redondo Beach, CA;
P. Bailey, University of Oxford, UK

20 to 80 K Commercial Stirling and PT Cryocoolers

95CVD Diamond Based Miniature Stirling Cooler

D. Patterson , K. Jamison, M. Durrett, Nanohmics, Inc., Austin, TX; A. Kashani,
Atlas Sci., San Jose, CA; D. Gedeon, Gedeon Assoc., Athens, OH

105Microminiature Linear Split Stirling Cryogenic Cooler for Portable Infrared Applications

A. Veprik, H. Vilenchik, S. Riabzev, and N. Pundak, Ricor Ltd, En Harod Ihud, Israel

117Miniature Pulse Tube Research

Y. Luwei, L. Jingtao, Z. Yuan, and C. Houlei, Chin. Acad. of Sci., Beijing, China

123Sunpower's CPT60 Pulse Tube Cryocooler

K. Wilson, C. Fralick, Sunpower, Inc., Athens, OH, D. Gedeon, Gedeon Assoc.,
Athens, OH; M. Yoshida, S. Kawahara, Smach Co. Ltd, Osaka, Japan

133Prototyping a Large Capacity High Frequency Pulse Tube Cryocooler

J. Tanchon, T. Trollier, A. Ravex, Air Liquide, Sassenage, France; and E. Ercolani, CEA, Grenoble, France

141A Pulse Tube Cryocooler with 300 W Refrigeration at 80 K and an Operating Efficiency of 19% Carnot

J. Zia, Praxair, Inc., Tonawanda, NY

149Design, Construction and Operation of a Traveling-Wave Pulse Tube Refrigerator

S. Rotundo, G. Hughel, A. Rebarchak, Y. Lin and B. Farouk,
Drexel University, Philadelphia, PA

4 to 10 K Commercial Pulse Tube and GM Cryocoolers

157Free Third-Stage Cooling for Two-Stage 4 K Pulse Tube Cryocooler

A. Ravex, T. Trollier, J. Tanchon, Air Liquide, Sassenage, France; T. Prouv, CNRS, Grenoble, France

163A Novel Three-Stage 4 K Pulse Tube Cryocooler

C. Wang, Cryomech, Inc., Syracuse, NY

171Performance Characteristic of a Two-Stage Pulse Tube Refrigerator in Coaxial Configuration

T. Koettig, R. Nawrodt, M. Thürk, and P. Seidel, Friedrich-Schiller Univ., Jena, Germany

177Investigation of Two-Stage High Frequency Pulse Tube Cryocoolers

L. Yang, M. Zhao, J. Liang, Y. Zhou, Chin. Acad. of Sci., Beijing, China; M. Dietrich
and G.Thummes, Institute of Applied Physics, University of Giessen, Germany

187Research on Improvement in the Efficiency of the GM Refrigerator

H. Nakagome, Chiba University, Chiba University, Japan; T. Okamura,
Tokyo Inst. of Tech., Yokohama, Japan; T. Usami, Nissan Motor Co. Ltd., Yokosuka, Japan

Thermoacoustically-Driven Pulse Tube Cryooolers

195Non-Zero Time-Averaged Thermoacoustic Effects, Linear or Nonlinear?

E. Luo, Chin. Acad. of Sci., Beijing, China

205Numerical Investigation of DC Flow Loss in Thermoacoustic Systems

W. Dai and E. Luo, Chin. Acad. of Sci., Beijing, China

211A High Frequency Thermoacoustically Driven Thermoacoustic-Stirling Cryocooler

E. Luo, G. Yu, S. Zhu, W. Dai, Chin. Acad. of Sci., Beijing, China

219A Thermoacoustically Driven Two-Stage Pulse Tube Cryocooler

J. Hu, E. Luo, W. Dai, Chin. Acad. of Sci., Beijing, China

Pulse Tube System Performance Considerations

225Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High-Frequency Acoustic-Stirling ("Pulse-Tube") Coolers

P. Spoor and J. Corey, CFIC Inc., Troy, NY

231Proposed Rapid Cooldown Technique for Pulse Tube Cryocoolers

R. Radebaugh, A. O'Gallagher, M. Lewis, and P. Bradley, NIST, Boulder, CO

241Gravity Effect in High Frequency Coaxial Pulse Tube Cryocoolers

X. Hou, L. Yang, J. Cai, and J. T. Liang, Chinese Academic of Sciences, China

249Thermodynamic Comparison of Two Types of Stirling Refrigerators

Z. Wu, E. Luo, W. Dai, and S. Li, Chin. Acad. of Sci., Beijing, China

257A Hybrid Counterflow Pulse-Tube Refrigerator

W. Liang, M. Will and A. de Waele, Eindhoven University of Technology, The Netherlands

Pulse Tube Analysis and Experimental Investigations

263Characterization of Inertance Tubes Using Resonance Effects

M. Lewis, P. Bradley, R. Radebaugh and Z. Gan, NIST, Boulder, CO

271A New Type of Streaming in Pulse Tubes

W. Liang and A. de Waele, Eindhoven University of Technology, The Netherlands

277Visualization of Secondary Flow in an Inclined Double-Inlet Pulse Tube Refrigerator

M. Shiraishi, Nat. Insti. of AIST, Ibaraki, Japan; M. Murakami, Univ. of Tsukuba,
Ibaraki, Japan; A. Nakano and T. Iida, Orbital-Engineering, Yokohama, Japan

285The Second-Law Based Thermodynamic Optimization Criteria for Pulse Tube Refrigerators

A. Razani, and T. Roberts, AFRL, Kirtland AFB, NM; B. Flake European Office of
Aerospace Research and Development, London, UK

293A Model for Parametric Analysis of Pulse Tube Losses in Pulse Tube Refrigerators

C. Dodson, A.Razani and T. Roberts, AFRL, Kirtland AFB, NM

301One-Dimensional Analytical and Numerical Models of the Pulse-Tube Cooler

M. Etaati, R. Mattheij, A. Tijsseling, and A. de Waele, Eindhoven Univ. of Technology,
The Netherlands

307Validation of an Integrated Modeling Tool for Study of Pulse Tube Coolers

A.S. Gibson, D. Nikanpour, Canadian Space Agency, St-Hubert, Canada; H. Elmrini,
MAYA Heat Transfer Tech. Ltd., Montreal, Canada

317A Numerical CFD Model for Reciprocating Laminar Flow in a Channel

M. Raizner, I. Garaway and G. Grossman, Technion Israel Inst. of Tech., Haifa, Israel

Linear Compressor Development and Modeling

327Development of a Compressor for a Miniature Pulse Tube Cryocooler of 2.5 W at 65 K

N. Matsumoto, Y. Yasukawa, K. Ohshima, T. Takeuchi, K. Yoshizawa, T. Matsushita,
Y. Mizoguchi, and A. Ikura, Fuji Electric Systems Co., Ltd., Tokyo, Japan

335Investigation of Materials for Long Life, High Reliability Flexure Bearing Springs for Stirling Cryocooler Applications

C.J. Simcock, Honeywell Hymatic, England

345Gas Spring Losses in Linear Clearance-Seal Compressors

P. Bailey, M. Dadd, C. Stone, Oxford University, UK; J.S.Reed, EADS Astrium Ltd, UK;
and T.M. Davis,AFRL Kirtland Air Force Base, NM

353Evaluation of Total Pressure Oscillator Losses

P. Bradley, M. Lewis, R. Radebaugh, Z. Gan, NIST, Boulder, CO; J. Kephart, NAVSEA
Naval Surface Warfare Center, Philadelphia, PA

361Oil-Lubricated Compressors for Regenerative Cryocoolers Using an Elastic Membrane

E. Luo, Z. Wu, G. Yu, J. Hu, and W. Dai, Chin. Acad. of Sci., Beijing, China

Regenerator Materials Development and Testing

367Cooling Performance of Multilayer Ceramic Regenerator Materials

T. Numazawa, K. Kamiya, Nat. Inst. for Materials Science, Japan; Y.Hirastuka, T. Satoh,
Sumitomo Heavy Ind., Japan; H. Nozawa and T. Yanagitani, Konoshima Chem. Co., Japan

373Ribbon Regenerator Performance in a Single-Stage GM Cryocooler

G. Green and W. Superczynski, Chesapeake Cryogenics Inc., Annapolis, MD

381Results of Tests of Etched Foil Regenerator Material

M. Mitchell, Mitchell/Sterling, Berkeley, CA; D. Gedeon, Gedeon Assoc., Athens, OH;
G. Wood, Sunpower Inc., Athens, OH; M. Ibrahim, Cleveland State Univ., Cleveland, OH

389Photoetched Regenerator for Use in a High Frequency Pulse Tube

W. Superczynski and G. Green, Chesapeake Cryogenics, Inc., Arnold, MD

Regenerator Modeling and Performance Investigations

397Hydrodynamic Parameters of Pulse Tube or Stirling Cryocooler Regenerators for Periodic Flow

J. Cha, S. Ghiaasiaan, P. Desai, Georgia Inst. of Tech., Atlanta, GA; J. Harvey,
and C. Kirkconnell, Raytheon Space and Airborne Systems, El Segundo, CA

405Numerical Simulation of a Regenerator in a Two-Stage Pulse Tube Refrigerator

B. Y. Du, L. Yang, J. Cai, and J. Liang, Chin. Acad. of Sci., China

411Phase Shift Characteristics of Oscillating Flows in Pulse Tube Regenerators

H. Chen, L. Yang, J. Cai, J. Liang, Chin. Acad. of Sci., Beijing, China

419Dimensionless Analysis for Regenerator Design

J. Shi, J. Pfotenhauer, and G. Nellis, University of Wisconsin, Madison, WI

J-T and Throttle-Cycle Cryocooler Developments

429Thermoacoustic Expansion Valve: A New Type of Expander to Enhance Performance of Recuperative Cryocooler Systems

Z. Hu, CryoWave Adv. Tech., Inc., Pawtucket, RI

437All-Micromachined Joule-Thomson Cold Stage

P. Lerou, G Venhorst, T. Veenstra, H. Jansen, J. Burger, H. Holland, H. ter Brake, and
H. Rogalla, University of Twente, The Netherlands

443Progress Towards a Low Power Mixed-Gas Joule-Thomson Cryocooler for Electronic Current Leads

J. Pfotenhauer, J. Pettitt, D. Hoch, G. Nellis, University of Wisconsin, Madison, WI

453Composition Shift of a Mixed-Gas Joule-Thomson Refrigerator Driven by an Oil-Free Compressor

M. Gong, Z. Deng and J. Wu, Chin. Acad. of Sci., Beijing, China

459Composition Shift due to the Different Solubility in the Lubricant Oil for Multicomponent Mixtures

M. Gong, W. Zhou and J. Wu, Chin. Acad. of Sci., Beijing, China

469On the Differential and Integral Inversion States of the Joule-Thomson Effect and their Interrelation

B.Z. Maytal,, Rafael, Ltd., Haifa, Israel

477Modeling, Development and Testing of a Small-Scale Collins Type Cryocooler

C. Hannon, B. Krass, J. Gerstmann, Adv. Mech. Tech., Inc., Watertown, MA; G. Chaudhry,
J.G. Brisson, J. Smith Jr., MIT, Cambridge, MA

Sorption Cryocooler Developments

487Vibration-Free 4.5 K Sorption Cooler

J. Burger, H. Holland, R. Meijer, G. Venhorst, T. Veenstra, H. ter Brake, H. Rogalla,
Univ. of Twente, The Netherlands; M. Coesel, Dutch Space, The Netherlands; A. Sirbi,
ESA/ESTEC, The Netherlands; D. Lozano-Castello, Univ. of Alicante, Spain

497Flight Acceptance Testing of the Two JPL Planck Sorption Coolers

D. Pearson, B. Zhang, M. Prina, C. Paine, P. Bhandari, R. Bowman, and A. Nash,
NASA/JPL, Pasadena, CA; G. Morgante, INAF/ISAF-Sezione, Bologna, Italy

Recuperator Design and Performance Investigations

505Progress Towards a Micromachined Heat Exchanger for a Cryosurgical Probe

D. Hoch, G. Nellis, S. Schuetter, S. Klein, Univ. of Wisconsin, Madison, WI; W. Zhu,
Y. Gianchandani, Univ. of Michigan, Ann Arbor, MI

515Development and Testing of a Multi-Plate Recuperative Heat Exchanger for Use in a Hybrid Cryocooler

D.W. Hoch, G.F. Nellis, N.L. Meagher, University of Wisconsin-Madison Madison, WI;
J.R. Maddocks, Atlas Scientific, San Jose, CA; S. Stephens, AFRL, Kirtland AFB, NM

525A Recuperative Heat Exchanger for Space-Borne Turbo-Brayton Cryocoolers

R.W. Hill, M.G. Izenson, W.B. Chen, and M.V. Zagarola, Creare Inc., Hanover NH

Sub-Kelvin, Magnetic, and Optical Refrigerators

535Successful Qualification of the First PFM Space Dilution Refrigerator

S. Triqueneaux, and J. Delmas, Air Liquide, Grenoble, France; P. Camus, CRTBT-CNRS,
Grenoble, France; G. Guyot, IAS, Orsay, France

539All-Solid-State Optical Coolers: History, Status, and Potential

C. Mungan, USNA, Annapolis, MD; M. Buchwald, Buchwald Consulting, Bethesda, MD;
G. Mills, Ball Aerospace, Boulder, CO

549Study of Gd-Y Alloys for Use in Cycle of Active Magnetic Regeneration

S. Kito, H. Nakagome, Chiba University, Chiba, Japan; T. Kobayashi, A. Saito, H. Tsuji,
Toshiba Corp., Kawasaki, Japan

555A Study on the Formation of Magnetic Refrigerant La(Fe,Si)13 Compounds by Spark Plasma Sintering

H. Tsuji, A. Saito, T. Kobayashi, S. Sakurada, Toshiba Corp., Kawasaki Japan

Cryocooler Integration Technologies

563Cryocooler Performance Estimator

Peter Kittel, Palo Alto, CA

573Temperature Control Strategies in a Rectified Continuous Flow Loop for the Thermal Management of Large Structures

H. Skye, D. Hoch, S. Klein, G. Nellis, Univ. of Wisc., Madison, WI; J. Maddocks,
Atlas Scientific, San Jose, CA; and T. Roberts, AFRL, Kirtland AFB, NM

583Development of a Cryocooler to Provide Zero Boil-Off of a Cryogenic Propellant Tank

D. Frank, E. Roth, J. Olson, B. Evtimov, and T. Nast, Lockheed Martin ATC, Palo Alto, CA;
B. Sompayrac and L. Clark, Lockheed Martin ATC, Denver, CO

589Development of a Cryogenic Thermal Switch

M. Wang, L. Yang, T. Yan, J. Cai, and J. Liang, Chin. Acad. of Sci., Beijing, China

Space Cryocooler Applications

595Cryogenic Refrigeration Systems as an Enabling Technology in Space Sensing Missions

T. Roberts and F. Roush, AFRL, Kirtland AFB, NM

605Aerospace Cryocooler Selection for Optimum Payload Performance

C. Kirkconnell, Raytheon Space and Airborne Systems, El Segundo, CA

615HIRDLS Cooler Subsystem On-Orbit Performance—A Second Year in Space

J. Lock, R. Stack, D. Glaister, and W. Gully, Ball Aerospace, Boulder, CO

Commercial Cryocooler Applications

621Carbon Dioxide Flash-Freezing Process Applied to Ice Cream Production

T. Baker, J.G. Brisson and J.L. Smith, Jr., MIT, Cambridge, MA

629Cryogenic Refrigeration Cycle for Re-Liquefaction of LNG Boil-Off Gas

J. Moon, Y. Lee, Korea Inst. of Sci. and Tech., Seoul, Korea; Y. Jin, Korea Univ. of Tech. and Educ., Chungnam, Korea; E. Hong, Shinyoung Heavy Ind. Co., LTD, Junnam, Korea; H. Chang, Hong Ik Univ., Seoul, Korea

637Hydrogen Liquefaction by Magnetic Refrigeration

K. Kamiya, T. Numazawa, Nat. Inst. for Mat. Sci., Ibaraki Japan; H. Takahashi, Chiba
Univ., Chiba Japan; H. Nozawa, T. Yanagitani, Konoshima Chem. Co., Kagawa Japan

645Research on a Magnetic Refrigeration Cycle for Hydrogen Liquefaction

T. Utaki, T. Nakagawa, T. Yamamoto, Osaka University, Japan; K. Kamiya, T. Numazawa,
National Institute for Materials Science, Japan

655Helium-Liquefaction by Cryocooler for High-Field Magnets Cooling

Y. Choi, KBSI-NHMFL Collaboration Center, Tallahassee, FL; D. Kim, B. Lee, H. Yang,
Korea Basic Sci. Inst., Daejeon, Korea; T. Painter, H. Weijers, G. Miller, J. Miller, Nat'l High
Mag. Field Lab, Tallahassee, FL


© Copyright 2023

Powered by Wild Apricot Membership Software